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Abstract

Simulation technologies have become a useful tool to model many systems in a wide
variety of disciplines, ranging from social to natural sciences. In the engineering con‑
text, the mathematical description of physical systems is crucial in order to have a
deeper understanding of their future behaviour and take the best cost‑effective de‑
cisions in terms of design optimization. In the last decades, with the irruption of
the so‑called fourth paradigm of science, a growing interest is detected in the ma‑
chine learning of these scientific laws. Many of such approaches completely discard
centuries of scientific knowledge in favour of pure data‑driven models, whose ap‑
plication in real industry remains unclear over traditional mathematically‑founded
methods.

This thesis aims to develop deep learning methodologies to learn dynamical systems
from data. In this work, the scientific knowledge is incorporated into the model with
the imposition of the correct thermodynamical structure of the problem. Thus, it is a
hybrid approach between data‑driven black‑box methods and traditional analytical
formulations.

The first part of the thesis explores structure‑preserving deep learning methods to
simulate dynamical systems from data. This is achieved by using several inductive
biases, which enforce the metriplectic structure of dynamics by construction and
exploit the domain structure using the geometric deep learning principles. These
state‑of‑the‑art neural network architectures enable the identification of the dynam‑
ics of unknown systems even with highly nonlinear behaviour. Additionally, the
resulting integration scheme achieves both fast and accurate predictions with low
computational power and memory storage requirements.

The second part describes a method to identify the intrinsic dimensionality of a dy‑
namical system to obtain a reduced order model, which can be integrated in time
using a structure‑preserving architecture. This method is convenient for high‑dimen‑
sional data whose complex structure becomes impractical for standard techniques.
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Abstract

The third and final part explores two possible applications of the thesis contributions.
A learning procedure is described for open systems in which the interaction of exter‑
nal sources is relevant, based on the port‑Hamiltonian formalism and its extension
to metriplectic systems. The second application is an augmented reality demo for
the interaction of deformable solids in real‑time, enabled by the fast predictions of
the structure‑preserving learnt simulators developed in this thesis.
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Resumen

Las tecnologías de simulación se han convertido en una herramienta útil para mode‑
lizar muchos sistemas en una amplia variedad de disciplinas, desde las ciencias so‑
ciales a las naturales. En el contexto de la ingeniería, la descripción matemática de
los sistemas físicos es crucial para comprender mejor su comportamiento futuro y
tomar las decisiones más apropiadas en términos de optimización de su diseño. En
las últimas décadas, con la irrupción del llamado cuarto paradigma de la ciencia, se
ha detectado un creciente interés por el aprendizaje automático de estas leyes cien‑
tíficas. Muchos de estos enfoques descartan por completo siglos de conocimiento
científico en favor de modelos basados puramente en datos, cuya aplicación en la
industria real sigue sin estar clara frente a los métodos tradicionales con amplio fun‑
damento matemático.

El objetivo de esta tesis es desarrollar metodologías de aprendizaje profundo para
aprender sistemas dinámicos a partir de datos. En este trabajo, el conocimiento
científico se incorpora al modelo con la imposición de la correcta estructura termo‑
dinámica del problema. Así, se trata de un enfoque híbrido entre los métodos de
caja negra basados en datos y las formulaciones analíticas tradicionales.

La primera parte de la tesis explora métodos de aprendizaje profundo que preser‑
van la estructura para simular sistemas dinámicos a partir de datos. Esto se con‑
sigue utilizando varios sesgos inductivos, lo cual fuerza la estructura metripléctica
de la dinámica por construcción y explota la estructura del dominio utilizando los
principios del aprendizaje profundo geométrico. Estas arquitecturas de redes neu‑
ronales de última generación permiten identificar la dinámica de sistemas descono‑
cidos incluso con un comportamiento altamente no lineal. Además, el esquema de
integración resultante consigue predicciones rápidas y precisas con bajos requisitos
de potencia computacional y almacenamiento en memoria.

La segunda parte describe un método para identificar la dimensionalidad intrínseca
de un sistema dinámico con el fin de obtener un modelo de orden reducido, que
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Resumen

puede integrarse en el tiempo utilizando una arquitectura que preserva la estruc‑
tura. Este método es conveniente en datos de alta dimensionalidad cuya compleja
estructura resulta impráctica para las técnicas estándar.

La tercera y última parte explora dos posibles aplicaciones de los métodos expuestos
en la tesis. Se describe un procedimiento de aprendizaje para sistemas abiertos en los
que la interacción con fuentes externas es relevante, basado en el formalismo port‑
Hamiltoniano y su extensión a sistemas metriplécticos. La segunda aplicación es una
demo de realidad aumentada para la interacción de sólidos deformables en tiempo
real, posibilitada por las rápidas predicciones de los simuladores desarrollados en
esta tesis.
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Introduction and Background





Introduction 1

The study of physical dynamical systems has been of utmost importance in the early
development of modern science. In fact, entire mathematical fields have risen as a
consequence of the study of such disciplines. Differential calculus was motivated by
the study of rigid body motions such as celestial bodies or ballistic studies. Fourier
series were developed as a convenient method to solve the heat equation, and then
generalized to integral transforms in harmonic analysis. The study of the relation‑
ship between heat and work on steam engines led to thermodynamics, a discipline
which explains macroscopic behaviours in terms of microscopic constituents using
statistical mechanics. These are only a few examples in which the discovery of com‑
plex physics phenomena led to the necessity of research on the convenient mathe‑
matical tools to describe them. As the famous Galileo Galilei once said,

‘Mathematics is the language with which God has written the universe.’

In the engineering context, the mathematical description of physical systems is cru‑
cial in order to have a deeper understanding of their future behaviour and take the
best cost‑effective decisions in terms of design optimization. This is specially rele‑
vant in engineering fields with high operational costs, such as aeronautical and auto‑
motive industries, and can be achieved by the use of computer simulations. However,
engineering systems usually consist of complex interacting geometries, so it is neces‑
sary not only to mathematically describe the process in terms of ordinary (ODEs) or
partial differential equations (PDEs), but also to develop efficient numerical methods
to solve them.

Although the methods presented in this thesis are formulated for arbitrary dynam‑
ical systems, we will focus on continuum mechanical systems: solid and fluid me‑
chanics. Both disciplines are described by a set of PDEs derived from conservation
laws such as mass, momentum or energy, resulting in the elasticity and the Navier‑
Stokes equations respectively. Even if these formulations are well known since the
19th century, many research fields aiming to solve them optimally are still open. In
the last decades, the gold standard methods have been the Finite Element Method

3



Chapter 1. Introduction

(FEM) in solid mechanics [253, 110] and the Finite Volume Method (FVM) in fluid me‑
chanics [53], both consisting on representing and evaluating the continuum (infinite)
formulation in a set of (finite) algebraic equations. Those methods have an extensive
mathematical literature of stability and convergence theorems, which makes them
reliable for the use in industry.

1.1 General Overview
With the irruption of the so‑called fourth paradigm of science [101] a growing inter‑
est is detected in the machine learning of these scientific laws. A plethora of meth‑
ods have been developed that are able to produce more or less accurate predictions
about the response of physical systems in previously unseen situations by employing
techniques ranging from classical regression to the most sophisticated deep learning
methods. These data‑driven procedures are sub‑fields of the so‑called Artificial Intel‑
ligence (AI).

Artificial intelligence can be defined as “the study of agents that receive percepts from the
environment and perform actions” [228]. Although AI was already formally studied in
the early 1950s, the field experienced several hype cycles followed by criticism and
funding cuts, also known as AI winters [71]. However, recent advances in compu‑
tational power, image processing techniques and Large Language Models (LLMs)
among others have led to huge research interest in AI algorithms. This AI spring
[273] has motivated the development and adaptation of models in other fields such
as physics simulations, on which this thesis focuses.

This section explores some of the most important AI techniques, starting from clas‑
sical Machine Learning to the more advanced tools in deep learning (see Fig. 1.1).

Artificial Intelligence

Visual 
Perception

Linear / Logistic
Regressionk-Means

PCA Bol�mann
Machine

MLP

CNN RNN GNN

SVM

Automatic
Reasoning

Knowledge
Representation

Machine Learning

Neural Networks

Deep Learning

Figure 1.1: Hierarchical representation of Artificial Intelligence.
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1.1. General Overview

1.1.1 Machine Learning
Machine learning (ML) is a subset of AI algorithms which learn a certain problem
automatically through experience by means of data. Thus, they are often referred
to as data‑driven methods and can be categorized into three types of algorithms. Su‑
pervised learning uses labelled data, which requires previous processing, whereas
unsupervised learning is able to identify patterns in data without explicit labels. Semi‑
supervised learning is an intermediate approach which uses a small set of labelled
data combined with a large amount of unlabelled data. Some important examples
of such categories are the following:

• Supervised:

– Classification: Labelling observations to classify into categories. Examples:
Logistic Regression, Random Forest [102].

– Regression: Estimation of the relationship among variables. Examples:
Support Vector Machine (SVM) [40], Linear Regression.

• Unsupervised:

– Clustering: Group data which share similarities. Examples: k‑Means [90],
k‑Nearest Neighbour [60]

– Dimensionality reduction: Reduction of arbitrary number of variables into
principal (latent) variables. Examples: Principal Component Analysis
(PCA) [270], Linear Discriminant Analysis (LDA) [38].

• Semi‑supervised:

– Reinforcement leaning: An agent takes an action in an environment to max‑
imize a prescribed reward. Examples: Q‑learning [37], Residual Algo‑
rithms [13].

– Generative models: Learn complex data distributions and generate new
samples. Examples: Mixture Models [276], Diffusion Models [241].

Among all the machine learning techniques briefly sketched here, there is one which
stands out from the rest: the Neural Network model. It consists of artificial neuron
units connected into layers, inspired by the biological neurons constituting animal
brains. If the network has multiple layers it is usually referred to as Deep Learning,
which enables to learn more complex representations of the studied problem in a
hierarchical scheme.

1.1.2 Physics-Informed Deep Learning
A recent interest is observed in the incorporation of already existing scientific knowl‑
edge into these data‑driven procedures, whose interest is twofold. Indeed, we prefer
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not to get rid of centuries of scientific knowledge and rely exclusively on powerful
machine learning strategies. Existing theories have proved to be useful in the predic‑
tion of physical phenomena and are still in the position of helping to produce very
accurate predictions, as followed in the so‑called data‑driven computational mechanics
[133]. On the other hand, these theories help to keep the consumption of data to a
minimum. This is relevant because data are expensive to produce and maintain, so
already existing scientific knowledge could alleviate the amount of data needed to
produce a successful prediction.

This discipline has taken multiple names depending on the research group context:
physics‑informed machine learning [120, 121], AI for Science [262, 281], scientific ma‑
chine learning [43], physics augmented learning [156] or data‑driven science and engi‑
neering [25] to name a few. Each one has developed different approaches to enforce
physical constraints to the deep learning algorithms, which we will refer to as biases.
These biases can be categorized depending on the deep learning procedure in which
they are applied:

1. Database generation: In supervised learning, simulation data from classical
methods are usually used to generate a high‑fidelity dataset which embodies
the underlying physics of a phenomena. Another alternative is the use of mea‑
sured data, in which several problems might occur such as sensor noise or im‑
possibility to measure all the variables of the physical system. These are called
observational biases.

2. Architecture design: The machine learning model can incorporate prior as‑
sumptions in terms of mathematical hard constraints called inductive biases.
Those are related to the fulfilment of certain symmetries and conservation laws
of the problem, which is the most principled way of obtaining a physical solu‑
tion. Such approaches require sophisticated implementations which might be
difficult to scale and optimize.

3. Loss function: The most popular approach to enforce physicality of the re‑
sults is by including the governing equations in the loss function, which explic‑
itly favours the convergence to solutions that satisfy those restrictions. Those
penalty soft constraints are called learning biases. In this case, the constraints
are only approximately satisfied and requires prior information about the gov‑
erning dynamics, but provides a flexible and unsupervised framework.

This thesis will use a combination of the second and third points, i.e. enforcing phys‑
icality by construction in the architecture design together with soft constraints. For
that purpose, it is necessary to dive into the mathematical foundations of inductive
biases and the specific theoretical physics formulation used, which are addressed in
Chapter 2.
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1.2 Objectives
The main objective of this thesis is to develop deep learning algorithms to learn dy‑
namical systems from data with the use of physics‑based constraints. This objective
is achieved by the consecution of the following subgoals:

• Design a learning procedure able to identify the correct metriplectic structure
of high‑fidelity data simulations.

• Develop model order reduction strategies to handle high‑dimensional systems.

• Compare the existing methodologies and the proposed ones in terms of result
accuracy and computational performance.

• Exploit the identified dynamics to create robust real‑time simulators with ther‑
modynamical guarantees.

1.3 Thesis Outline
This thesis is divided into five different parts. Part I consists of the first introductory
Chapter 1, which explains the general overview, motivation and objectives of the
thesis. Next in Chapter 2 a background and literature review of the relevant concepts
of the thesis is presented. The main contributions of this thesis are presented in the
next three parts:

• Part II presents two machine learning methods to learn thermodynamic con‑
sistent integrators of dissipative dynamical systems. Chapter 3 handles the
problem using standard feed‑forward neural networks in academic problems
and Chapter 4 extends the algorithm to more complex unstructured domains
using advanced tools based on geometric deep learning.

• Part III focuses on the study of structure‑preserving model order reduction. In
Chapter 5 we perform a reduction technique using sparse autoencoders which
identify the intrinsic dimensionality of the problem in order to integrate it in
time using structure‑preserving neural networks.

• Part IV explores the performance of the developed techniques in several real‑
world applications. Chapter 6 aims to simulate complex systems by parts using
port‑Hamiltonian‑like structures whereas Chapter 7 presents an augmented
reality pipeline to simulate the interaction between the user and deformable
virtual objects in real‑time.

Last, Part V is dedicated to sum up all the conclusions of the thesis contributions and
future work.
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1.4 Contributions andMeasurable Results

1.4.1 Publications
In the following section, we state the publications which support the contributions
of this thesis. All the work presented has already been published in four top‑tier
journals indexed in the Journal Citations Reports (JCR) and SCIMAGO Journal and
Country Rank (SJR). The specific publications are also explicitly described at the be‑
ginning of each chapter, with the thesis author underlined.

1. Q. Hernández, A. Badías, D. González, F. Chinesta, & E. Cueto
Structure‑preserving neural networks
Journal of Computational Physics, 426, 109950 (2021)
JCR Impact Factor: 4.645 (Q1 in Physics, Mathematical), SJR: 1.75 (Q1 in Applied Mathematics)

2. Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Deep learning of thermodynamics‑aware reduced‑order models from data
Computer Methods in Applied Mechanics and Engineering, 379, 113763 (2021)
JCR Impact Factor: 6.588 (Q1 in Engineering, Multidisciplinary), SJR: 2.22 (Q1 in Computational Mechanics)

3. Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Thermodynamics‑informed graph neural networks
IEEETransactions onArtificial Intelligence, DOI: 10.1109/TAI.2022.3179681 (2022)
JCR Impact factor: ‑ (Not indexed yet), SJR: 1.38 (Q1 in Artificial Intelligence)

4. Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Port‑metriplectic neural networks: thermodynamics‑informed machine
learning of complex physical systems
Computational Mechanics, 72, 553–561 (2023)
JCR Impact Factor: 4.391 (Q1 in Mathematics, Interdisciplinary Applications), SJR: 1.32 (Q1 in Applied Mathematics)

5. Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Thermodynamics‑informed neural networks for physically realistic mixed
reality
Computer Methods in Applied Mechanics and Engineering, 407, 115912 (2023)
JCR Impact Factor: 6.588 (Q1 in Engineering, Multidisciplinary), SJR: 2.22 (Q1 in Computational Mechanics)

1.4.2 Conference Communications
The contributions of the thesis have been communicated in several international con‑
ferences. The following list contains the oral and poster presentations given per‑
sonally by the thesis author. Other communications given by co‑authors about the
present works are not included here.
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Oral Presentations

1. WCCM‑ECCOMAS 2020, Paris (France), Online
Learning Physics Through Themodynamically‑Informed Neural Networks
14th World Congress in Computational Mechanics and 7th European Congress on
Computational Methods in Applied Sciences and Engineering

2. COUPLED 2021, Barcelona (Spain), Online
Discovering the physical structure of dynamical systems with deep learning
IX International Conference on Coupled Problems in Science and Engineering

3. YIC 2021, Valencia (Spain), Online
Learning Physics through Themodynamically‑Informed Neural Networks
VI ECCOMAS Young Investigators Conference

4. MMLDT‑CSET 2021, San Diego (United States), Online
Simulating Physics with Structure‑preserving Graph Neural Networks
Mechanistic Machine Learning and Digital Twins for Computational Science, Engi‑
neering & Technology

5. SIAM‑PD 2022, Berlin (Germany), Online
Generic as an Inductive Bias in Neural Networks
SIAM Conference on Analysis of Partial Differential Equations

6. WCCM‑APCOM 2022, Yokohama (Japan), Online
Learning physics with metriplectic and geometric biases
15th World Congress in Computational Mechanics and 8th Asian Pacific Congress on
Computational Mechanics

7. ECCOMAS 2022, Oslo (Norway)
Deep learning of dynamical systems using geometry and thermodynamics
8th European Congress on Computational Methods in Applied Sciences and Engineer‑
ing

8. CMN 2022, Las Palmas (Spain)
Learning Mechanics with Geometry and Thermodynamics
Congress on Numerical Methods in Engineering

9. GACM 2022, Essen (Germany)
Learning Simulators with Geometry and Thermodynamics
9th GACM Colloquium on Computational Mechanics

10. M2P 2023, Taormina (Italy)
Deep learning of coupled dissipative systems
Math 2 Product: Emerging Technologies in Computational Science for Industry, Sus‑
tainability and Innovation
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11. YIC 2023, Porto (Portugal)
AI‑enhanced interactive simulators for virtual reality applications
VII ECCOMAS Young Investigators Conference

12. ENUMATH 2023, Lisbon (Portugal)
Structure‑preserving neural networks for coupled dissipative systems
European Conference on Numerical Mathematics and Advanced Applications

13. MMLDE‑CSET 2023, El Paso (United States)
Port‑metriplectic neural networks for coupled dissipative systems
2nd IACMMechanisticMachine Learning andDigital Engineering for Computational
Science Engineering and Technology

Poster Presentations

1. C2D3 Virtual Symposium 2020, Cambridge (United Kingdom), Online
Learning physics with thermodynamically informed neural networks
Cambridge Center for Data‑Driven Discovery, Virtual Symposium, Research Ren‑
dezvous

2. ICLR 2021, SimDL Workshop, Vienna (Austria), Online
Learned simulators that satisfy the laws of thermodynamics
International Conference on Learning Representation 2021, Deep Learning for Simu‑
lation Workshop

3. IUTAM 2022, Paris (France), Online
Learning simulators with geometry and thermodynamics
IUTAM Symposium on Data‑Driven Mechanics

4. LOG 2022, Boston (United States)
Learning simulators with geometry and thermodynamics
Learning on Graphs Conference 2022, MIT‑CSAIL Meetup

1.4.3 Software
The results presented in this thesis can be replicated and/or extended using the pub‑
licly available code on Github https://github.com/quercushernandez. The reposi‑
tories contain:

• High‑fidelity simulation databases of the publication examples.

• Pre‑trained model parameters and testing functions used to generate the re‑
sults of the present thesis.

• Training functions to generate custom networks.

• Plotting and result statistics functions.
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1.4.4 Research Internship
A 6 month research internship was carried out during the thesis.

• Supervisor: Prof. George Karniadakis.

• Dates: October 2022 ‑ April 2023:

• Institution: Brown University, Providence (United States).
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Background 2

This chapter summarizes the theoretical foundations on which this thesis will be
constructed. In the first section, the basic building blocks of deep learning such as
the Multilayer Perceptron and the Autoencoder are explored. The literature review
is focused on the specific application to physics simulations and general differential
equation solvers.

The second section focuses on more sophisticated models such as Convolutional,
Recurrent and Graph Neural Networks formulated in terms of the geometric deep
learning paradigm. The text is not intended to be exhaustive about all the possible
deep learning architectures in the literature, but only the most relevant ones for the
present thesis. More specific details of the theory and applications can be found in
[76, 24].

The last section of the chapter explains the physical formalism used throughout the
thesis. First, the canonical Hamiltonian formulation of classical mechanics is gener‑
alized to Poisson systems and finally to dissipative systems. More information about
theoretical mechanics and non‑equilibrium dynamics can be found in [7, 197].

2.1 The basics of Deep Learning
Machine learning is a discipline whose objective is to extract relevant information
from data. From the mathematical point of view, machine learning not only aims to
learn the (probably non‑linear) mapping between inputs and outputs but also the
representation itself. This is usually referred to as representation learning. Deep learn‑
ing is a smaller field in machine learning that tackles this problem by introducing
representations that are expressed in terms of other simpler representations, called
features. This is achieved with the composition of several learning blocks whose com‑
bination is able to learn more complex patterns from the previous ones. It becomes
very obvious in computer vision, where an abstract concept (content of an image)
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Chapter 2. Background

is decomposed as a combination of simpler patterns (edges, corners) with different
degrees of complexity, see Fig. 2.1.

Mid-level featuresLow-level features
Raw data

High-level features
(Edges) (Eyes, nose) (Facial structure)

(Image)

Figure 2.1: Representation learning in face recognition. By using deep learning, each layer
adds an extra level of complexity to the hidden representations or features. At the end, the
network is able to recognize objects present in the image as a combination of its simpler parts.
Source of images: [142].

In fact, deep learning revolutionized image processing as it offered a consistent way
to mathematically parametrize a human perception, such as concepts in an image,
into hierarchical features suitable for optimize via minimization techniques. This
was possible with the development of Convolutional Neural Networks, which of‑
fered an ideal framework specially engineered for image data structures. Similarly,
special architectures were designed for other data structures such as time series (Re‑
current Neural Networks) or natural language texts (Transformers). Physics prob‑
lems have also an intrinsic mathematical structure unveiled by centuries of theoret‑
ical and experimental knowledge. From Newton’s laws of motion to the Standard
Model, the laws of nature can often be described as a set of partial differential equa‑
tions (PDEs) which can also lead neural networks to find the correct solution of a
dynamical problem. These are the foundations of the so‑called physics‑informed deep
learning, as already introduced in Chapter 1.

2.1.1 Multilayer Perceptron
The simplest building block of artificial deep neural network architectures is the neu‑
ron or perceptron (Fig. 2.2, left). Several neurons are stacked in amultilayer perceptron
(MLP), which is mathematically defined as follows

x[l] = σ(W [l]x[l−1] + b[l]), (2.1)

where l is the index of the current layer, x[l−1] and x[l] are the layer input and output
vector respectively, W [l] is the weight matrix of the last layer, b[l] is the bias vector of
the last layer and σ is the activation function. If no activation function is applied, the
MLP is equivalent to an affine transformation. However, σ is chosen to be a nonlin‑
ear function in order to increase the capacity of modelling more complex problems,
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2.1. The basics of Deep Learning

which are commonly nonlinear. When fully assembled, the MLP transforms an in‑
put feature vector x ∈ RNin into an output vector y ∈ RNout .

MLPϕ : RNin −→ RNout ,

x 7−→ y.

where ϕ = {W , b} represent the trainable parameters, i.e. weights and biases, of the
MLP.

Input layer Hidden layers Output layer
Layer

Neuron
... ...

...

...

...

Figure 2.2: Representation of a single neuron (left) as a part of a fully connected neural net
(right). The complete architecture is commonly referred to as multilayer perceptron or fully‑
connected neural network.

The main reason under the fact that neural networks are able to learn and reproduce
such a variety of problems is that they are considered to be universal approximators
[44, 106], meaning that they are capable of approximating any measurable function
to any desired degree of accuracy.1

Standard MLPs has been widely used in physical simulations for their simplicity
and versatility. The most popular approach to physical priors in machine learning
are the so‑called Physics‑informed Neural Networks (PINNs) [214, 120]. The idea is
to make use of MLPs to learn the solution of a partial differential equation (PDE)
by minimizing its residual in predefined collocation points subject to the initial and
boundary conditions. Incorporating the residual equation to the learning procedure
acts as a regularizer in the learning process [191] enhancing its generalization ca‑
pability [168], see Fig. 2.3. There is an extense literature using PINNs applied to
different engineering fields such as fluid mechanics [117, 28, 218], solid mechanics
[86, 216, 85, 84], material science [154, 20, 87], heat transfer [193] to name a few.

Recent work in Deep Operator Networks (DeepONets) [158, 159] extends the notion of
PINNs to operators, enabling to learn parametric problems with no re‑training for a

1The original proof takes various strong assumptions, such as the use of squashing (logistic‑like)
activation functions and compact domains. Several versions of the universal approximation theorem
were developed in subsequent works relaxing the original assumptions [147, 209, 126]
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Ground Truth
PredictionTraining data

Collocation points

Figure 2.3: Neural network fitting model without (left) and with physics priors (right). The
incorporation of the residual of a PDE equation in the collocation points acts as a regulariza‑
tion and data augmentation in the learning process whereas in a classical data‑driven model
fails to capture the dynamics outside of the training/interpolating domain.

new set of parameters [266]. The architecture consist of two subnetworks: a brunch
whose input are the sensors of the problem (input function) and a trunk to evalu‑
ate the output function. This idea has been also exploited in several works such as
multiphysics problems [169, 27], heat transport [160], geology [115], wave mechan‑
ics [146], etc. Multilayer perceptrons have also being used to create differentiable
simulators for robotic applications [212, 94] and contact dynamics [208].

2.1.2 Autoencoders
An autoencoder [76] is a type of artificial neural network which modifies the dimen‑
sionality of an input into a coded version, which ideally contains the same informa‑
tion, by learning the identity function. It is composed by an encoder Eϕ, which maps
input data x ∈ RNin onto a code or latent vector y ∈ RNcode , and a decoder Dθ, which
applies the inverse mapping back to the original space,

Eϕ : RNin −→ RNcode

x 7−→ y.

Dθ : RNcode −→ RNin

y 7−→ x.

Usually, autoencoders are used to generate reduced order models of high‑dimensio‑
nal data in a bottleneck structure (Ncode < Nin) called undercomplete autoencoder.
Conversely, overcomplete autoencoders expand the input dimension to generate a
higher feature latent space (Ncode > Nin).

The vanilla autoencoder scheme, where the encoder and decoder are modelled with
standard MLPs, has been used in many fields such as physics [54, 272, 59], chem‑
istry [153], mechanics [144, 93] or computer graphics [236]. They have been used to
discover representations of the Koopman eigenfunctions from data [244, 162, 201].
Fourier Neural Operator [152] uses an overcomplete encoder to decompose the in‑
put physical variables into its Fourier components. In the field of learnt simula‑
tors, autoencoder‑based model order reduction has been used to learn differentiable
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physics simulators for control purposes [17].

Variational autoencoders have been widely used in generative models and time se‑
ries modelling. The most successful architecture is Neural Ordinary Differential Equa‑
tions [32, 45, 124, 127], which make use of ODE solvers as a black‑box block inside
the deep learning pipeline to predict the latent variables of a time series.

2.2 Geometric Deep Learning
Pure MLPs‑based architectures are agnostic to the data structure of the studied prob‑
lem. This is, the input features are considered to have no preferred relationships
between each other, as all the neurons are fully‑connected (see Fig. 2.2). Even if
that data can be processed with vanilla MLPs, specific architectures were developed
to exploit that data structures like Convolutional Neural Networks [141] in image
processing and Recurrent Neural Networks [227] in time series processing. Both
architectures exploit the structured data in grid elements and timesteps to induce
translation and time invariances respectively, see Fig. 2.4, and are considered as ma‑
jor breakthroughs in their respective fields. The reason why those architectures suc‑
ceeded is because these models present strong inductive biases [14], which are learn‑
ing priors induced by construction in the learning process which drives the learning
algorithm to certain desirable solutions (Fig. 2.5).

MLP CNN RNN GNN
(Specified)(Sequentiality)(Locality)(Independence)

Figure 2.4: Various relational inductive biases in standard deep learning network architec‑
tures.

Motivated by the study of such architectures, a new machine learning paradigm re‑
cently arose known as geometric deep learning [23]. The main insight is that, even
if big data problems suffer from the curse of dimensionality [109], most tasks of
interest have predefined regularities arising from an underlying low‑dimensional
mathematical structure. The main objective of geometric deep learning is to expose
those regularities through unified geometric principles that can be applied to a wide
spectrum of applications. This concept is already widely used in physics, where the
identification of the symmetries of the problem is fundamental to formulate new
theories [161]. In deep learning, those symmetries were also exploit in popular tra‑
ditional architectures already mentioned in Fig. 2.4 but were not treated as a unified

17



Chapter 2. Background

Local minima

Global minima

Figure 2.5: Effect of inductive biases in a loss landscape. A model with weak inductive bi‑
ases (black lines) can be equally attracted to several local minima [178], and the converged
solution can be arbitrarily affected by random variations [243]. A model with strong induc‑
tive biases (red lines) is driven by construction to particular solutions, in this case the global
minima.

framework. In the next section, a brief introduction to geometric deep learning will
be presented based on [24].

2.2.1 Group Theory
A symmetry of an object is a transformation that leaves a certain property of that ob‑
ject invariant. Symmetries are inherent in many machine learning tasks, like transla‑
tional symmetry in image processing or time warping in time series prediction. The
set of symmetries of an object has a particular algebraic structure known as a group.
Thus, the central mathematical model for studying geometric deep learning is based
on group theory.

We first need to clarify the distinction between the mathematical space where the
concepts of group theory are formulated, denoted as domain Ω, and the vector space
of the output features, denoted as C where dim(C) are the channels. The relationship
between the domain and the channel space is called a signal x : Ω → C. The set of
all possible signals are gathered in the signal space X (Ω) = {x : Ω→ C}. The input,
output and feature vectors used in all the machine learning applications explained
below are contained on this high‑dimensional space. A familiar example is an RGB
image, depicted in Fig. 2.6. Symmetry concepts might not be obvious in the signal
domain X (Ω), but have been widely studied in the mathematical abstract domain
Ω. The objective is to translate domain concepts to the real‑world signal domain.

Now we are ready to start with a few basic definitions of group theory. A group is
a set G that together with an internal operation ⋆ : G× G → G satisfies that for all
g, h, k ∈ G we have:

• Associativity: (g ⋆ h) ⋆ k = g ⋆ (h ⋆ k)
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Signals

Domain

Figure 2.6: Example of the signal space X (Ω) of 2D images and its abstract representation
in a domain Ω. The signal space contains all the possible n× n RGB images, which is very
high‑dimensional. However, an image can also be considered as a signal x(u) of a domain
u ∈ Ω. The advantage of that identification is that you can now exploit the the underlying
low‑dimensional structure of X (Ω) by studying the simpler domain Ω.

• Identity: Exists a unique e ∈ G satisfying e ⋆ g = g ⋆ e = g

• Inverse: Exists a unique g−1 satisfying g ⋆ g−1 = g−1 ⋆ g = e

Fig. 2.7 depicts the group induced by the symmetries of a triangle, also called the
dihedral group D3, and contains all the rotations and reflections that maintain the
triangle unchanged. This is an example of a discrete or finite group.

Inverse Identity

Symmetry group

Reflections:

Rotations:

1

3

2 3 1

2

2

1

3

1

2

3 2

3

1 3

1

2

Figure 2.7: Example of the dihedral discrete group D3. The symmetries of a triangle define a
set of 6 transformations which meet all the requirements to be considered a (discrete) group.

Groups can also be continuous. A very useful continuous group is the set of all invert‑
ible n× n matrices together with the usual matrix multiplication, which is called the
general linear group GL(n) = {M ∈ Rn×n |det(M) 6= 0}. It represents the symme‑
try of linear transformations that preserve the vector space structure, i.e. vector addi‑
tion and scalar multiplication. If that group is restricted to orthogonal matrices with
determinant 1, it is called special orthogonal group SO(n) = {M ∈ Rn×n |M> =

M−1, det(M) = 1}, which encodes all the possible rotational symmetries of an n‑
sphere and models rotation transformations in Rn.
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Note that commutativity is not required for the definition of a group. If the group is
commutative, i.e. g ⋆ h = h ⋆ g, the group is called Abelian. An example of Abelian
group is a vector space V with the sum of vectors as internal operation (V,+) which
is called an additive group. The definition of group is very simple yet powerful, as
a priori very different kind of objects and transformations might be represented by
the same abstract group.

The interesting property about groups is that you can define an action over a domain
Ω and study how entities in Ω transform. A (left) group action Φ : G ×Ω → Ω is a
mapping such that for all u ∈ Ω and g, h ∈ G satisfies the following properties:

• Identity: Φ(e, u) = u for e ∈ G the group identity.

• Compatibility: Φ(g ⋆ h, u) = Φ(g, Φ(h, u))

The notation Φ(g, u) will be shortened as g · u for the rest of the text. For exam‑
ple, in the case of the Euclidean group in R2 denoted as E(2) you can define actions
that preserves Euclidean distances, which consist of translations, rotations and re‑
flections. The same group can act on the space of images, by translating, rotating
and flipping the image pixels. This is, by defining an action on a group G = E(2)
over a low‑dimensional domain Ω = R2 automatically induces an equivalent action
on the high‑dimensional signal space X (Ω) of images, see Fig. 2.8. This new action
has the following expression

(g · x)(u) = x(g−1 · u), (2.2)

where g ∈ G, u ∈ Ω and x(u) ∈ X (Ω). One can check that it is a valid group action,
as it satisfies associativity. Note that for simplicity we denote again the group action
over the signal space with the same “·” symbol as the domain space. However, they
are two conceptually different operations.

Domain

Symmetry
group

Group
representation

Signals

Figure 2.8: Group action Φ(g, u) = g · u ∈ Ω over a domain and its equivalent action (g ·
x)(u) ∈ X (Ω) in the signal space.
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A particular case of group actions is when the mapping Φ is linear, which is called
group representation. These actions are specially important as they allow us to de‑
scribe linear actions by using invertible matrices. This is, a group representation is
a map ρ : G → GL(n) that assigns to each group element g ∈ G an invertible n× n
matrix ρ(g) ∈ GL(n). Similarly to the definition of group action, the group internal
operation and the matrix multiplication must be consistent. This is, for all g, h ∈ G:

• Compatibility: ρ(g ⋆ h) = ρ(g)ρ(h)

Now Eq. (2.2) can be transformed into the usual matrix multiplication

(g · x)(u) = ρ(g)x(u).

In the Euclidean group example, the distance‑preserving transformations can be rep‑
resented as a composition of translation, rotation and reflection matrices. Those
transformations are called isometries and are widely used in robotics and computer
vision.

Now we are ready to apply the abstract group theory concepts to machine learning.
We have seen how a group G can act on some domain Ω to transform its entities in
a specific way. We also saw that if that transformation is linear, it can be transferred
to the signal domain X (Ω) via its matrix representation. As we discussed in the
introduction, the symmetries of Ω underlying the signals can impose a structure to
the functions defined over the signal domain. Two important cases are invariant and
equivariant functions. A function f : X (Ω)→ Y is

• G‑invariant if f (ρ(g)x) = f (x)

• G‑equivariant if f (ρ(g)x) = ρ(g) f (x)

for all x ∈ X (Ω) and g ∈ G. This is, invariant functions leave the output unaffected
by the group action, whereas equivariant functions transform the output the same
way as the inputs, see Fig. 2.9. This is a powerful inductive bias, as it reduces the
space of possible learnable functions to achieve a learning task.

However, the geometric priors described so far with theory group do not provide a
specific architecture for building such representation, but rather a series of necessary
conditions. In practice, the basic building blocks of geometric deep learning can be
summarized in the following architectures:

• Equivariant layers: Operations E : X (Ω, C) → X (Ω′, C ′) such that E is G‑
equivariant.

• Non‑linearity: Element‑wise non‑linear transformation σ : C → C ′ such that
(σ(x))(u) = σ(x(u)).

• Local pooling layers: Coarsening layers ϕ : X (Ω, C) → X (Ω′, C) which down‑
samples the domain, i.e. Ω′ ⊆ Ω.
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ʹcatʹ ʹcatʹ

Figure 2.9: Invariant (left) and equivariant (right) functions under a shift transformation.
Image classification tasks are invariant to the orientation of the objects whereas image seg‑
mentation tasks are equivariant.

• Global pooling layers: Operations ψ : X (Ω, C)→ Y such that ψ is G‑invariant.

To sum up, a general G‑invariant function f : X (Ω, C)→ Y can be constructed with
a composition of the previous operations

f = ψ ◦ ϕi ◦ σi ◦ Ei · · · ϕ1 ◦ σ1 ◦ E1,

where the domain and codomain of each subsequent operation match. Depending
on the input and output space particular features, each of those layers can be engi‑
neered with the appropriate layer architecture. Over the past decades, a vast amount
of deep learning architectures exploited such symmetries for different signal spaces
(Table 2.1). The following sections will explore the basic concepts behind each archi‑
tecture, with references in physical simulations application.

Table 2.1: Several deep learning architectures with possible symmetry groups.

Architecture Domain Ω Symmetry group G

RNN 1D Grid Time Warping W
CNN 2D Grid Translation T(2)
Spherical CNN Sphere Rotation SO(3)
GNN Graph Permutation Σn
Transformer Complete Graph Permutation Σn
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2.2.2 Convolutional Neural Networks
Vanilla CNNs [140] were first widely used in image processing and then modified
with many variants, such as the Convolutional Autoencoders [172], Generative Ad‑
versarial Networks (GAN) [77] or Fully Convolutional Networks [157]. A convolution
of a signal x defined over a group G with a filter K is defined as

(x ∗ K)(g) =
∫

u∈G
x(u)K(g−1 · u)dµ(u),

where g ∈ G and dµ(u) is the measure of integration. In the case of the usual image
convolution, over the translation group G = T(2) we can get the discretized version
of the convolution2 as a sliding kernel K of width Wk and height Hk over the image
I pixel coordinates (u, v):

(I ∗ K)u,v =

Hk∑
i=1

Wk∑
j=1

Ki,j Iu+i,v+j.

Plane: Images: Functions:

Convolutional layer

Figure 2.10: Convolutional Neural Networks in terms of group representations. The domain
has an underlying symmetry group over the translation group T(2), whose representation
in the signal space is the shift operator Sv. CNNs exploit the mentioned symmetry using
convolutional layers which are translational equivariant.

Convolutional neural networks have been widely explored in fluid mechanics [248,
75, 195, 260, 155, 242], as physical phenomena described in Eulerian coordinates have
similar structure of an image. However, they are also widely used in fields like solid
mechanics [174, 263], high energy physics [211, 33] or heat transport [283, 164]. In
the context of learnt simulators, [134] use the combination of CNNs and MLPs for
perception and prediction respectively.

2.2.3 Recurrent Neural Networks
The classical approach to process time series are recurrent neural networks. The
time correlations in RNNs are learnt by using a cyclic connection between the hidden

2The convolution operation used in CNNs is a misnomer. In practice, convolutions are imple‑
mented as cross‑correlations, which are equivalent to convolutions with rotated filters.
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states h(t) of the neural network, allowing to identify temporal patterns of data snap‑
shots z(t). The most popular recurrent architectures are Bidirectional RNN [234],
Long Short‑Term Memory (LSTM) networks [103] and Gated Recurrent Unit (GRU)
[35].

Real line: Snapshots: Functions:

Gating units

Figure 2.11: Gating Recurrent Neural Networks in terms of group representations. The do‑
main has an underlying symmetry group over the warping group W, whose representation
in the signal space is a time warping mapping3(in this case, a time rescaling). The gating
mechanisms in RNNs such as LSTM networks make the architecture invariant to time trans‑
formations [245], such as irregular sampling of the temporal data.

Many examples of works can be found in the literature of time series forecasting
[252, 12], nonlinear dynamics [179, 229], solid [67, 280] and fluid mechanics [118,
149], heat transport [166], etc. Recurrent neural networks have also been used in
learn simulators for contact trajectories [2, 56].

2.2.4 Graph Neural Networks
More recently, the use of graph neural networks (GNN) has revolutionized previous
approaches with very promising results. A clear example are Transformer models
[257], which make use of attention to overcome the limited short‑term memory of
RNNs.

The basic data structure used in GNNs is the graph G = (V , E , u)where V = {1, ..., n}
is a set of |V| vertices, E ⊆ V × V is a set of |E | edges and u are the global features.
The vertices represent entities of the problem and the edges indicate the (directed)
relationship between them. These relationships are encoded by the adjacency matrix
A = {aij = 1 if (i, j) ∈ E else 0}.

The graph features are processed following some prescribed rules. In a general
graph, we can define the vertex feature vector vi ∈ RFv , the edge feature vector eij ∈ RFe

and the global feature vector u ∈ RFg . The feature dimensions are Fv, Fe and Fg respec‑
tively. The transformation from an initial graph G = (V , E , u) to a processed graph
G ′ = (V ′, E ′, u′) can be performed with several generic operations based on [14] (see
Fig. 2.12), which can be summed up in the following:

3Time transformations in the form of τ : R+ → R+ for any monotonically increasing differentiable
mapping τ.
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Edges Nodes Global

Figure 2.12: General processing block of a Graph Neural Network.

• Edge block: The updated edge features e′ij are computed as a function πe of
the previous edge features, the sending and receiving nodes based on the ad‑
jacency matrix and the global features. These edge‑wise features are generally
called messages from node i to node j

πe : RFe+2Fv+Fg −→ RFe

(eij, vi, vj, u) 7−→ e′ij,

where (·, ·) denotes vector concatenation.

• Node block: For each node i the messages are pooled with a (local) aggrega‑
tion function ϕe based on the neighborhood Ni = {j ∈ V | (i, j) ∈ E} of the
node. Then, the updated node features x′i are computed with a second process‑
ing function πv using the current node features, the pooled messages and the
global features. This gathering operation is called themessage passing algorithm.

πv : RFv+Fe+Fg −→ RFv

(vi, ϕe(e′ij), u) 7−→ v′i.

• Global block: The global feature vector is updated with the collapsed informa‑
tion of all the edges and vertices of the graph, by using two (global) aggregation
functions ψv and ψu over all the edges (i, j) ∈ E and vertices i ∈ V respectively,

πu : RFv+Fe+Fg −→ RFu

(ψv(v′i), ψu(e′ij), u) 7−→ u′.

The processing functions πe, πv and πu can be modelled as standard MLPs, which
are shared along all vertices and edges. The aggregation functions ϕe, ψv and ψu are
chosen to be commutative in order to achieve permutation equivariance. This is, the
solution is permuted the same under a permutation P of the initial features vi = X,
see Fig. 2.13.

This general GNN scheme can be simplified to get all the successful architectures
found in the literature. The most used models are Graph Convolutional Networks
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Graph: Node features: Functions:

Message passing

Figure 2.13: Graph Neural Networks in terms of group representations. The domain has
an underlying symmetry group over the permutation group Σn, whose representation in
the signal space is a permutation matrix P. The message passing algorithm in GNNs is
permutation equivariant, as the aggregation functions used are commutative functions.

(GCN) [131], Graph Attention Networks (GAT) [259], GraphSAGE [88] and Message
Passing Neural Networks [69].

Many works used the versatility of GNNs for predicting physical simulations in un‑
structured domains. Several graph‑based works have achieved great improvements
in physics problems such as predicting atomic bond forces [107, 39], particle track‑
ing in high energy physics [238, 119], n‑body problem with more general interactions
[130, 14, 41], or learning simulators to predict complex fluid interactions [231] and
meshed domains [207, 284]. Graph‑based neural networks have been also exten‑
sively used for differentiable simulators [150, 16, 4].

2.3 Structure of Dynamical Systems
As already pointed out in the last section, the development of new physic theories
relies on identifying the underlying symmetries of the problem [161]. This is a di‑
rect consequence of Noether’s (first) theorem, which states that every differentiable
symmetry of a physical system has a corresponding conservation principle. Transla‑
tional and rotation invariances are related to the conservation of linear and angular
momentum respectively, whereas time translation invariance implies the conserva‑
tion of energy. This theorem establishes a direct bridge between the exploit of the
symmetries of a problem, the basic principle of geometric deep learning, and the ful‑
filment of conservation laws, required for robust and realistic physical simulations.
This section explores the mathematical foundations of classical physics formulations
and their extension to dissipative dynamics4 in order to incorporate those physical
priors to deep learning algorithms.

The field of theoretical mechanics has studied dynamic phenomena with the start‑
ing point of Newton’s laws of motion in the 18th century. From then, many authors

4Noether’s theorem was originally formulated for conservative phenomena. Its extension to dissi‑
pative systems might not necessarily hold [64].
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continued to study those equations, giving rise to more modern and sophisticated re‑
formulations. The two dominant branches of theoretical mechanics are Lagrangian
mechanics and Hamiltonian mechanics, which are equivalent formulations to de‑
scribe the dynamics of a conservative system (see Table 2.2).

Table 2.2: Classical mechanics formalisms for conservative systems.

Newtonian Lagrangian Hamiltonian

Equation Newton’s laws Euler‑Lagrange Hamilton
Quantity Forces Lagrangian Hamiltonian

The next sections develop a progressively general framework to handle more compli‑
cated systems, starting with the classical Hamiltonian formalism, extended to Pois‑
son systems and finally dissipative dynamics.

2.3.1 Hamiltonian Dynamics
Consider a collection of N particles, defined in space by the generalized coordinates
or position q = (q1, ..., qN). The position vector lies in the configuration space S , which
is a manifold that contains every possible configuration that those particles can oc‑
cupy based on the physical restrictions of the system (see Fig. 2.14). As the configu‑
ration space is a differentiable manifold, we can define the tangent space of S at q,
denoted as TqS , which contains the velocities of the particles v = q̇ = (q̇1, ..., q̇N) for
any given trajectory γ(t) passing through q.

Physical space Configuration space

Figure 2.14: Physical and configuration space of a 2D double pendulum. The position of
the two masses is determined by θ1, θ2 ∈ [0, 2π), each one representing a circumference S1

in the physical space R2. Then, the configuration space is a manifold described by a torus
S = T2 = S1 × S1, with points of coordinates q = (θ1, θ2) and velocities v = q̇ = (θ̇1, θ̇2).

The Hamiltonian paradigm is based on the consideration of two independent vari‑
ables: the position and the generalized momentum p = (p1, ..., pN). The momen‑
tum is defined as the gradient of the Lagrangian with respect to the velocities in
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Lagrangian mechanics, so it lies on the dual space of TqS : the cotangent space T∗qS .
Both quantities represent the phase space of the problem, and it is naturally defined
as the cotangent bundle of the physical space T∗S = {z = (q, p) | q ∈ S , p ∈ T∗qS},
which encodes all possible states of the system (Fig. 2.15).

Figure 2.15: Phase space diagrams of a particle in a potential and a simple pendulum. In
the particle potential, the coordinates are (q, p) whereas in the pendulum case (θ, pθ) where
pθ = mL2θ̇. In these cases, the Hamiltonian is equivalent to the total energy of the system,
which is composed by the kinetic K(p) and potential V(q) energy.

Denoting by H(q, p) : T∗S → R the Hamiltonian of the system,5 the time evolution
of both variables is given by the Hamilton’s canonical equations of motion

dq
dt

=
∂H
∂p

,
dp
dt

= −∂H
∂q

. (2.3)

They express the reversible kinematics of the phase space variables q and p, meaning
that the system is invariant under time translations. By recalling Noether’s theorem,
one can translate this time symmetry into an energy conservation law, which can be
easily derived using the chain rule

dH
dt

=
∂H
∂q
· dq

dt
+

∂H
∂p
· dp

dt
=

∂H
∂q
· ∂H

∂p
− ∂H

∂p
· ∂H

∂q
= 0.

Motivated by the symmetry of Eq. (2.3) and the importance of Hamilton’s equations
in physics, the mathematical structure of those systems has been studied in detail
into a formulation called Poisson algebra. This will be very useful in order to gener‑
alize to non‑canonical and dissipative systems.

Poisson algebra

Suppose that we are interested in the time evolution of some function of the phase
space variables and time f (q, p, t) : T∗S → R usually referred to as an observable.

5The Hamiltonian of a system can be derived directly from Lagrangian mechanics by considering
the Legendre transformation between the conjugate variables (q, q̇, t) and (q, p, t).
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The total time derivative of f is

d f
dt

=
∂ f
∂q
· dq

dt
+

∂ f
∂p
· dp

dt
+

∂ f
∂t

.

By using the Hamiltonian mechanics relationship in Eq. (2.3) we get the following
expression

d f
dt

=
∂ f
∂q
· ∂H

∂p
− ∂ f

∂p
· ∂H

∂q
+

∂ f
∂t

.

We now define the binary operation called the Poisson bracket {·, ·} : T∗S × T∗S →
TS of two arbitrary observables g(q, p, t) and h(q, p, t) as

{g, h} = ∂g
∂q
· ∂h

∂p
− ∂g

∂p
· ∂h

∂q
(2.4)

we can finally establish the following compact formula

d f
dt

= { f , H}+ ∂ f
∂t

. (2.5)

In particular, we can write Hamilton’s equations as Poisson bracket relations consid‑
ering that q and p do not have an explicit time dependence

dq
dt

= {q, H}, dp
dt

= {p, H}.

The Poisson bracket operation has a number of important properties. Formally, the
set of the phase space observables and the binary operation of a Poisson bracket
result in a Lie algebra structure. Thus, for any observables f , g, h and a, b ∈ R we
have

• (Bi)linearity: {a f + bg, h} = a{ f , h}+ b{g, h}

• Skew‑symmetry: { f , g} = −{g, f }

• Jacobi identity: { f , {g, h}}+ {h, { f , g}}+ {g, {h, f }} = 0

Using the skew‑symmetry property, we can derive also that { f , f } = 0. In addition
to the Lie algebra structure, the Poisson bracket also acts as a derivative operator,
which gives an additional associativity property:

• Product (Leibniz) rule: { f g, h} = f {g, h}+ g{ f , h}

It becomes obvious that the symmetric role of position and momentum is a key fea‑
ture in Hamiltonian dynamics and more general Poisson structures. Thus, we can
define a unified notation into a single phase space variable vector z = (q, p) and a
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skew‑symmetric block matrix J, transforming Eq. (2.3) in a more compact expression

dz
dt

= J
∂H
∂z

, J =

(
0 I
−I 0

)
. (2.6)

Likewise, in this notation the Poisson bracket of Eq. (2.4) takes a very simple form

{g, h} = ∂g
∂z
· J ∂h

∂z
. (2.7)

From the differential geometry perspective, the skew‑symmetric condition of J and
the smooth manifold generated by the phase space T∗S of the system result in a so‑
called symplectic manifold structure [8, 83]. Consequently, the matrix J is often called
the canonical symplectic matrix. In the next section we extend the notion of Poisson
algebra to model non‑canonical and dissipative phenomena.

Poisson systems

The first step is to use the mathematical properties of the Poisson brackets to over‑
come the limitation of canonical variables6 in the Hamiltonian paradigm. Lets con‑
sider a set of state variables z ∈ T∗S , which may not be canonical, and a more general
type of skew‑symmetric matrix L = L(z). We can reformulate Eq. (2.6) as

dz
dt

= L
∂H
∂z

. (2.8)

Similarly, the Poisson braket in matrix form of Eq. (2.7) transforms to

{g, h} = ∂g
∂z
· L∂h

∂z
.

Now the system is called a Poisson system and L is called non‑canonical symplectic
matrix or Poisson matrix, and in general depends on the state variables z. From now,
we drop this explicit dependence to reduce the notation. The canonical formulation
just remains as a special case where L = J is composed of identity blocks.

By defining the non‑canonical Hamiltonian equations, a new set of constants of mo‑
tion apart from the Hamiltonian arise that depend on the degeneracy of the Poisson
bracket. These set of non‑trivial functions are called Casimir functions C = C(z), for
which the Poisson bracket with any other observable f (q, p, t) is zero

{C, f } = 0, ∀ f (q, p, t).

In particular, if we consider the Hamiltonian we get Ċ = {C, H} = 0, so the Casimirs
are a constant of motion. In other words, if we modify the actual Hamiltonian of the

6They are called canonical because they satisfy Eq. (2.3), i.e. Hamilton’s canonical equations.
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system by adding a linear combination of Casimirs H′ = H + λiCi, it generates the
same dynamics as H. Note that the existance of Casimirs implies that L is not full
rank, and those Casimirs lie on the kernel7 of L. In that case, the Poisson bracket is
called to be degenerate.

2.3.2 Dissipative Dynamics
The study of dissipative systems in engineering is crucial to develop trustworthy
simulations of the real world. Very few phenomena in nature is perfectly conserva‑
tive. Every real mechanical system is subject to friction forces, which are responsible
for the imperfect transfer of energy, wasted in the form of heat. Similar effects arise
in many other disciplines, such as electrical power dissipation in conducting media,
irreversible processes in thermodynamics or viscous dissipation in fluid mechanics.
Experimental data measured from real systems will unlikely follow the conserva‑
tive equations of the Hamiltonian paradigm. Thus, the development of theoretical
extensions of the later to dissipative systems is of utmost importance in the study of
machine learning applied to engineering systems.

As we already saw in previous sections, the Hamiltonian formalism is based on the
conservation of the Hamiltonian and can be formulated with a rich mathematical
structure called the Poisson algebra. However, systems that are non conservative
would not a priori be expected to fit into de form of Eq. (2.8). Furthermore, it is not
clear which quantity remains constant for time translation invariance (energy con‑
servation) and which binary bracket is convenient for a rich mathematical structure.
The following section is based on the theoretical framework of the GENERIC formal‑
ism and metriplectic systems, which were an independent development of Morrison
[184, 183], Grmela and Öttinger [78, 200] and Kaufman [122].

Lets consider the state spaceM = {z = (q, p, . . .) | q ∈ S , p ∈ T∗qS , . . .} defined as
the usual phase space coordinates (q, p), which are not required to be canonical, in
addition to other variables considered to define the energetic state of the system up
to a certain level of detail.8 From now on, the vector z will be referred to as the state
vector of the system. The main idea is to consider a generalized free energyF :M→ R

defined as
F = E + S,

where E :M→ R is the energy and S :M→ R is called the entropy, and is defined to
be an arbitrary function of the Casimirs of the Poisson bracket. This is inspired on the
energy formulation of thermodynamics, in which the equilibrium state is obtained

7In the case of canonical Hamiltonian systems the matrix L = J is always full rank, i.e. the bracket
is non‑degenerate.

8The original formulation clearly states that there is no preferred universal set of state variables.
There are indeed many different choices of the state variables such that their respective brackets repli‑
cate the dynamics of the state variables z [200].
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by extremizing the energy at constant entropy.9 In analogy with the Poisson algebra,
we also need a binary bracket in order to produce the equations of motion. Thus we
define a dissipative generalization of Eq. (2.5) with the angle brace notation

d f
dt

= 〈 f ,F〉+ ∂ f
∂t

= { f ,F}+ [ f ,F ] + ∂ f
∂t

.

Here we can see the reason to choose F for generating the dynamics of the problem,
as the critical points of the generalized energy ∇F = 0 correspond to dynamical
equilibria ḟ = 0. Note that the generalized bracket 〈·, ·〉 : M×M → M has been
split into a skew‑symmetric {·, ·} and a symmetric contribution [·, ·]. The first is the
usual skew‑symmetric Poisson bracket and the second is a new symmetric bracket
which has similar properties of a metric tensor. This is, for any functions f , g, h of the
state space and time and a, b ∈ R the bracket satisfies

• (Bi)linearity: [a f + bg, h] = a[ f , h] + b[g, h]

• Symmetry: [ f , g] = [g, f ]

• Non‑Negativity: [ f , f ] ≥ 0

In matrix notation, the bracket can be expressed as

[g, h] =
∂g
∂z
·M ∂h

∂z
,

where M is a symmetric and positive‑semidefinite matrix called the friction matrix.

Finally, assuming that there is no explicit time dependence, applying the bilinearity
property of the brackets, using the Casimir and Entropy definition {·, S} = 0 and
adding an extra degeneracy condition on the new bracket [·, E] = 0, we get that for a
set of state variables z, their time evolution is governed by the following expression

dz
dt

= {z, E}+ [z, S]. (2.9)

A more practical and familiar expression using the matrix notation reads

dz
dt

= L
∂E
∂z

+ M
∂S
∂z

. (2.10)

This is called the General Equation for Non‑linear Equilibrium of Reversible‑Irreversible
Coupling (GENERIC) and it is of utmost importance in the development of the present
thesis. We must remember that for constructing Eq. (2.10) we needed to consider the

9For instance, we could consider any function of the form Fλ = E + λS where λ is a Lagrange
multiplier of the minimization problem [185]. A particular case of this is the Helmholtz free energy in
thermodynamics, which is defined as F = U− TS where U is the internal energy, T is the temperature
and S is the entropy.
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Casimir restrictions, which can be expressed in matrix form as

M
∂E
∂z

= L
∂S
∂z

= 0,

known as the degeneracy conditions. We can check that Eq. (2.10) has by construction
all the desirable properties:

• The energy potential function E plays the role of the Hamiltonian H in pure
Hamiltonian or Poisson systems. It is conserved, as inherits all the desirable
properties from the Poisson bracket, thus it satisfies the first law of thermody‑
namics (energy conservation):

dE
dt

= {E, E}+ [E, S] =
∂E
∂z
· L∂E

∂z
+

∂E
∂z
·M ∂S

∂z
= 0.

• The entropy potential function S represents the counterpart of the energy in
dissipative dynamics. The loss of energy from the dissipative dynamics is bal‑
anced with the entropy generation and has independence with respect to the
conservative dynamics, as it is defined to be a Casimir of the Poisson bracket.
It can be easily derived that it satisfies the second law of thermodynamics (en‑
tropy inequality):

dS
dt

= {S, E}+ [S, S] =
∂S
∂z
· L∂E

∂z
+

∂S
∂z
·M ∂S

∂z
=

∂S
∂z
·M ∂S

∂z
≥ 0.

A pure dissipative system described by the dissipative bracket is called a metric sys‑
tem, as the matrix M plays the role of a metric tensor. The combination of both
conservative (symplectic) and dissipative (metric) dynamics gives rise to the term
metriplectic system, as depicted in Fig. 2.16.

Symplectic
leaves

Metric
leaf

Figure 2.16: Metriplectic phase spaceM for a general dissipative dynamical system. The
conservative dynamics lie inside the symplectic leaves (blue) represented as level sets of
constant entropy Ṡ = 0, showing the reversibility of Hamiltonian dynamics. The GENERIC
dynamics take place in a single metric leaf (orange), i.e. surfaces with constant energy Ė = 0.
Conceptualization from [180].
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Many examples are found within the bibliography which formulate the GENERIC
structure of a wide variety of physical phenomena. The original formulation aimed
at the description of complex rheological models such as polymeric fluids and rep‑
tation models [200], as well as both classical and extended irreversible thermody‑
namics [80]. Independently, the compressible Navier‑Stokes equations [185] and the
Euler’s equation of rigid bodies [183, 173] were also shown to be metriplectic. Sev‑
eral applications in plasma physics models can be found such as the Vlasov‑Poisson
equation [274], dissipative relativistic plasmas [123], Lorenz‑covariant dissipative
systems [254] and the smoothed dissipative particle dynamics model [52]. Recent
works also explore the metriplectic formulation of dissipative thermoelasticity [221,
220, 175].

Multiscale problem

One of the advantages of the GENERIC formalism is that it offers a structure which
is applicable to any level of description of the system (Fig. 2.17). This coarse‑graining
procedure is widely used in thermodynamics and statistical physics [51].

• Microscale: In the microscale, the position and momentum of all the particles
of the system are known, so there is full information of the atomic interactions
and the Hamiltonian principles hold. In terms of the GENERIC formalism,
there is only a conservative term with no dissipation (L 6= 0, M = 0). This
scale is rarely used in computational mechanics due to the huge amount of
data needed for the description of the state of the system.

• Mesoscale: The mesoscale covers a wide variety of granularity levels, from the
molecular scale to crystal structures. The single atomic details are neglected in
favour of a simplified version of “pseudo‑atoms”, which drastically reduces
the degrees of freedom of the system easing the simulation of such structures.
These unresolved degrees of freedom are precisely manifested in entropy gen‑
eration (L 6= 0, M 6= 0) via the fluctuation‑dissipation theorem [137, 235].

• Macroscale: At this coarser scale the atomic particles have completely van‑
ished, and the conditions of continuum mechanics can be considered. Most
of engineering computational modelling lies on this level of description.

• Thermodynamics: In classical thermodynamics, the complex microscopic dy‑
namics of a system are averaged to a few measurable macroscopic quantities,
based on statistical mechanics. This is the coarsest level of detail, in which only
invariant quantities are used.

An equivalent approach is the Mori‑Zwanzig projection formalism [182, 288], which
provides a mathematical framework to construct coarse‑graining models from mi‑
croscale highly‑detailed simulations.
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Figure 2.17: Different levels of description of a dynamical system. The coarse‑graining pro‑
cess simplifies complex systems at various levels, reducing the data needed to represent the
system but losing information of the details.

To sum up, the GENERIC formalism not only provides a thermodynamically con‑
sistent structure to handle general dynamical systems, but also a model valid for
different levels of granularity of a simulation.

2.3.3 Structure-Preserving Deep Learning
The rich mathematical structure of symplectic and metriplectic systems is a strong
inductive bias to learn the underlying physics of a problem. In this case, the prob‑
lem is to identify the potential functionals (Hamiltonian, Lagrangian, etc) based on
the state variables, becoming a system identification problem. Thus, the only infor‑
mation available to the deep learning procedure is a basic physical structure that the
dynamics must follow, but no ad hoc equations are explicitly imposed as in previous
physics‑informed algorithms. We refer to this new approach as structure‑preserving
deep learning.

Several authors take advantage of the Hamiltonian structure to construct symplectic
integrators to predict conservative dynamical systems [230, 116, 176, 249, 34]. Oth‑
ers, use the Hamiltonian principles to design more expressive deep neural network
architectures [63] or to find the Hamiltonian function and phase space from data [18,
251]. The Hamiltonian paradigm is also widely used in quantum mechanics, where
similar deep learning literature can be found in problems such as electron dynamics
[21], learning ground states [135] or optimal control [66]. Alternative formulations
can be developed by resorting to the equivalent Lagrangian formalism, see [22, 163,
287, 145, 5], among others.
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Chapter 2. Background

The present thesis main contribution is the extension those methods, only valid for
conservative systems, to dissipative systems via the GENERIC formalism. Follow‑
ing this work, several alternative algorithms have later been proposed including the
degeneracy conditions as hard constraints using tensor factorization [143] or skew‑
symmetric matrices [282].

In the context of model order reduction, several reduction techniques have been de‑
veloped to conserve the Hamiltonian [206, 70, 1, 165, 100] and metriplectic [81] struc‑
ture of the full order systems. Alternative approaches to dissipative systems have
later been explored through the Onsager principle [277, 108].
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Structure-Preserving
Neural Networks 3

In this chapter, we develop a method to learn physical systems from data by us‑
ing feedforward neural networks and whose predictions comply with the first and
second principles of thermodynamics. The method employs a minimum amount
of data by enforcing the metriplectic structure of dissipative Hamiltonian systems
in the form of the so‑called General Equation for the Non‑Equilibrium Reversible‑
Irreversible Coupling, GENERIC. The method does not need to enforce any kind of
balance equation, and thus no previous knowledge on the nature of the system is
needed. Conservation of energy and dissipation of entropy in the prediction of pre‑
viously unseen situations arise as a natural by‑product of the structure of the method.
Examples of the performance of the method are shown that comprise conservative
as well as dissipative systems, discrete as well as continuous ones. The content of
this chapter is included in the following publication [95]:

Q. Hernández, A. Badías, D. González, F. Chinesta, & E. Cueto
Structure‑preserving neural networks

Journal of Computational Physics, 426, 109950 (2021)

3.1 Introduction
As already pointed out in Chapter 1, there is a growing interest in the machine learn‑
ing of scientific laws. For instance, recent works in solid mechanics have substituted
the constitutive equations with experimental data [133, 9], while conserving the tra‑
ditional approach on physical laws with high epistemic value (i.e., balance equa‑
tions, equilibrium), also known as data‑driven computational mechanics. Similar
approaches have applied this concept to the unveiling (or correction) of plasticity
models [112], while others created the new concept of constitutive manifold [113,
114]. Other approaches are designed to unveil an explicit, closed form expression
for the physical law governing the phenomenon at hand [26].
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Chapter 3. Structure‑Preserving Neural Networks

In the context of deep learning, many approaches have already been explored in the
last years to solve PDEs with neural networks, as presented in Section 2.1. Addition‑
ally, several works aim to exploit the symplectic structure of Hamiltonian dynamics
to learn conservative systems, see Section 2.3. However, many real engineering sys‑
tems, thus measured data, do not follow the conservative model due to dissipative
effects. For that reason, it is relevant to develop machine learning tools to learn such
systems using the convenient inductive biases.

Several co‑authors have introduced the so‑called thermodynamically consistent data‑
driven computational mechanics [72, 73, 68]. Unlike other existing works, this ap‑
proach does not impose any particular balance equation to solve for. Instead, it relies
on the imposition of the right thermodynamic structure of the resulting predictions,
as dictated by the GENERIC formalism [78]. This ensures conservation of energy and
the right amount of entropy dissipation, thus giving rise to predictions satisfying the
first and second principles of thermodynamics. These techniques, however, employ
regression to unveil the thermodynamic structure of the problem at the sampling
points. For previously unseen situations, they rely on interpolation on the matrix
manifold describing the system.

The aim of this chapter is the development of a new structure‑preserving neural
network architecture capable of predicting the time evolution of a system based on
experimental observations on the system, with no prior knowledge of its governing
equations, to be valid for both conservative and dissipative systems. The key idea
is to merge the proven computational power of neural networks in highly nonlin‑
ear physics with thermodynamic consistent data‑driven algorithms. The resulting
methodology, as will be seen, is a powerful neural network architecture, conceptu‑
ally very simple—based on standard feedforward methodologies—that exploits the
right thermodynamic structure of the system as unveiled from experimental data,
and that produces interpretable results [189].

3.2 Problem Statement
Weinan E seems to be the first author in interpreting the process of learning physical
systems as the solution of a dynamical system [48], the so‑called dynamical systems
equivalence of machine learning. Consider a system whose governing variables will
be hereafter denoted by z ∈ M ⊆ Rn, withM the state space of these variables,
which is assumed to have the structure of a differentiable manifold in Rn. The prob‑
lem of learning a given physical phenomenon can thus be seen as the one of finding
an expression for the time evolution of their governing variables z,

ż =
dz
dt

= F(x, z, t), x ∈ Ω ∈ RD, t ∈ I = (0, T], z(0) = z0, (3.1)
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3.3. Methodology

where x and t refer to the space and time coordinates within a domain with D = 2, 3
dimensions. F(x, z, t) is the function that gives, after a prescribed time horizon T,
the flow map z0 → z(z0, T).

While this problem can be seen as a general supervised learning problem (we fix both
z0 and z), when we have additional information about the physics being represented
by the sought function F, it is legitimate to try to include it in the search procedure.

The goal of this chapter is to develop a new method of solving Eq. (3.1) using state‑of‑
the‑art deep learning tools, in order to predict the time evolution of the state variables
of a given system. The solution is forced to fulfill the basic thermodynamic require‑
ments of energy conservation and entropy inequality restrictions via the GENERIC
formalism, presented in the next section.

3.3 Methodology
In this section we develop the appropriate thermodynamic structure for dissipative
systems. The theoretical background in Section 2.3 shows that both conservative and
dissipative systems can be modelled with the use of metriplectic structures such as
the GENERIC formalism, based on non‑equilibrium thermodynamics. It is not only
a theoretically and experimentally validated theory, but also is appropriate for dy‑
namical systems at different scales. Once such a geometric structure is found for the
system, we are in the position of fixing the framework in which our neural networks
can look for the adequate prediction of the future states of the system.

3.3.1 Proposed Integration Algorithm
In order to numerically solve the GENERIC equation, we formulate the discretized
version of Eq. (2.10) following previous works [74]:

zt+∆t − zt

∆t
= L

DE
Dz

+ M
DS
Dz

. (3.2)

The time derivative of the original equation is discretized in time increments ∆t with
a forward Euler scheme, where zt = z(t) and T = NT∆t with NT the total number
of snapshots of the simulation. L and M are the discretized versions of the Poisson
and friction matrices. Last, DE

Dz and DS
Dz represent the discrete gradients, which can be

approximated in a finite element sense as:

DE
Dz
' Az,

DS
Dz
' Bz, (3.3)

where A and B represent the discrete matrix form of the gradient operators.
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Finally, manipulating algebraically Eq. (3.2) with Eq. (3.3) and including the degen‑
eracy conditions, the proposed integration scheme for predicting the dynamics of a
physical system is the following:

zt+∆t = zt + ∆t (LAzt + MBzt) ,

subject to:

LBzt = 0,

MAzt = 0,

ensuring the thermodynamical consistency of the resulting model. Once the learning
procedure is accomplished, the neural network is expected to integrate the system
dynamics in time, given previously unseen initial conditions.

To sum up, the main objective of this work is to compute the form of the A(z) and
B(z) gradient operator matrices, subject to the degeneracy conditions, in order to
integrate the initial system state variables z0 over certain time steps ∆t of the time
interval I . In this case, the form of matrices L and M are known in advance, given
the vast literature in the field. If necessary, these terms can also be computed [74],
as will be explored in Chapters 4 and 5.

3.3.2 Learning Procedure
In this work, we use a multilayer perceptron as shown in Fig. 2.2, mathematically
modelled as a composition of neuron functions f [l] following Eq. (2.1). The desired
output ŷ is then computed as

ŷ = ( f [L] ◦ f [L−1] ◦ ... ◦ f [l] ◦ ... ◦ f [2] ◦ f [1])(x), (3.4)

from a defined input x in L total layers. The challenge is to optimize the weights and
biases such that they approximate the solution of the studied problem.

The input of the neural net is the vector state of a given time step zt, and the outputs
are the concatenated GENERIC matrices Anet and Bnet, i.e. for a system with n state
variables the number of inputs and outputs are Nin = n and Nout = 2n2. Then,
using the GENERIC integration scheme, the state vector at the next time step znet

t+∆t
is obtained. This method is repeated for the whole simulation time T with a total of
NT snapshots.

The complete dataset D is composed by Nsim multiparametric simulation cases of
a dynamical system evolving in time. Each case Di contains the labelled pair of a
single‑step state vector zt and its evolution in time zt+∆t for each node of the system

D = {Di}Nsim
i=1 , Di = {(zt, zt+∆t)}T

t=0,
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where the datasetD is disjointly partitioned in 80% training and 20% test: Dtrain and
Dtest respectively. The training is performed in a single‑snapshot supervision, which
has two main advantages: (i) enables parallelization between snapshots, which de‑
creases training time by the use of GPU acceleration, and (ii) avoids intensive mem‑
ory usage due to a several snapshot recursive training.

The state variables of a general dynamical system may differ in several orders of
magnitude from each other, due to their own physical nature or measurement units.
Then, a pre‑processing of the input data (in this case, normalization) is used here to
improve the model performance and stability.

The number of hidden layers Nh depends on the complexity of the problem. Increas‑
ing the net size raises the computational power of the net to model more complex
phenomena. However, it slows the training process and could lead to data overfit‑
ting, limiting its generalization and extrapolation capacity. The size of the hidden
layers is chosen to be the same as the output size of the net Nout.

The cost function for our neural network is composed of three different terms:

• Data loss: The main loss condition is the agreement between the network out‑
put and the real data. It is computed as the squared error sum, computed
between the predicted state vector znet

t+1 and the ground truth solution zGT
t+∆t for

each time step,
Ldata = ‖zGT

t+∆t − znet
t+∆t‖2

2, (3.5)

where ‖ · ‖2 denotes the L2‑norm.

• Fulfilment of the degeneracy conditions: The cost function will also account
for the degeneracy conditions in order to ensure the thermodynamic consis‑
tency of the solution, implemented as the sum of the squared elements of the
degeneracy vectors for each time step,

Ldeg = ‖LBnetznet
t ‖2

2 + ‖MAnetznet
t ‖2

2. (3.6)

This term acts as a regularization of the loss function and, at the same time, is
the responsible of ensuring thermodynamic consistency. In other words, it is
the cornerstone of our method.

• Regularization: In order to avoid overfitting, an extra L2 regularization term
Lreg is added to the loss function, defined as the sum over the squared weight
parameters of the network.

Lreg =
L∑
l

n[l]∑
i

n[l+1]∑
j

(w[l]
i,j)

2. (3.7)
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The total cost function, Eq. (3.8), is computed as the sum squared error (SSE) of the
data loss and degeneracy residual, in addition to the regularization term, at the end
of the simulation time T for each train case. The regularization loss is highly depen‑
dent on the size of the network layers and has different scaling with respect to the
other terms, so it is compensated with the regularization hyperparameter λr (weight
decay). An additional weight λd is added to the data loss term, which accounts for
the relative scaling error with respect to the degeneracy conditions.

L =

NT∑
n=0

(λdLdata
n + Ldeg

n ) + λrLreg. (3.8)

The usual backpropagation algorithm [204] is then used to calculate the gradient of
the loss function for each net parameter (weight and bias vectors), which are up‑
dated with the gradient descent technique [226]. The process is then repeated for a
maximum number of epochs Nepoch. The resulting training algorithm is sketched in
Fig. 3.1.

GENERICMLP MSE

Figure 3.1: Sketch of a structure‑preserving neural network training algorithm.

Algorithms 1 and 2 show a pseudocode of our proposed algorithm to both the train‑
ing and test processes. The proposed method is fully implemented in PyTorch [205]
and trained in an Intel Core i7‑8665U CPU.

3.3.3 EvaluationMetrics
The net performance is evaluated with the mean squared error (MSE) of the state
variables prediction, associated with the data loss term, Eq. (3.5), over all the time
snapshots,

MSEdata (zi) =
1

NT

NT∑
n=0

(
zGT

t,i − znet
t,i

)2
. (3.9)
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Algorithm 1: Pseudocode for the train algorithm of the SPNN.

Load train database: zGT (train partition), ∆t, L, M;
Define network architecture: Nin, Nout = 2N2

in, Nh, σj;
Define hyperparamteres: η, λd, λr;
Initialize wi,j, bj;
for epoch← 1 : Nepoch do

for train_case← 1 : Ntrain do
Initialize state vector: znet

0 ← zGT
0 ;

Initialize losses: Ldata,Ldeg = 0;
for snapshot← 1 : NT do

Forward propagation: [Anet, Bnet]← SPNN(zGT
t ); ▷ Eq. (3.4)

Time integration:
znet

t+∆t ← znet
t + ∆t (LAnetznet

t + MBnetznet
t ); ▷ Eq. (3.2)

Update data loss: Ldata ← Ldata + Ldata
n ; ▷ Eq. (3.5)

Update degeneracy loss: Ldeg ← Ldeg + Ldeg
n ; ▷ Eq. (3.6)

end for
SSE loss function: L← λdLdata + Ldeg + λrLreg ▷ Eq. (3.7)–(3.8)
Backward propagation;
Optimizer step;

end for
Learning rate scheduler;

end for

The same procedure is applied to the degeneracy constraint, associated with the de‑
generacy loss term, Eq. (3.6), over all the time snapshots,

MSEdeg (zi) =
1

NT

NT∑
n=0

(
LBnetznet

t,i + MAnetznet
t,i

)
. (3.10)

As a general error magnitude of the algorithm, the average MSE of both the train
(N = Ntrain) and test trajectories (N = Ntest) is also reported for both the data (m =

data) and degeneracy (m = deg) constraints,

MSEm
(z) =

1
N

N∑
i=1

MSEm (zi). (3.11)
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Algorithm 2: Pseudocode for the test algorithm of the SPNN.

Load test database: zGT (test partition), ∆t, L, M;
Load network parameters;
for test_case← 1 : Ntest do

Initialize state vector: znet
0 ← zGT

0 ;
for snapshot← 1 : NT do

Forward propagation: [Anet, Bnet]← SPNN(znet
t ); ▷ Eq. (3.4)

Time step integration:
znet

t+∆t ← znet
t + ∆t (LAnet

t znet
t + MBnet

t znet
t ); ▷ Eq. (3.2)

Update state vector: znet
t ← znet

t+∆t;
end for
Compute MSEdata, MSEdeg; ▷ Eq. (3.9)–(3.10)

end for
Compute MSEdata, MSEdeg; ▷ Eq. (3.11)

3.4 Experiments

3.4.1 Double Thermoelastic Pendulum

Description

The first example is a double thermoelastic pendulum consisting of two masses m1

and m2 connected by two springs of variable lengths λ1 and λ2 and natural lengths
at rest λ0

1 and λ0
2, as depicted in Fig. 3.2.

Figure 3.2: Double thermoelastic pendulum.

The set of variables describing the double pendulum is here chosen to be

S = {z = (q1, q2, p1, p2, s1, s2) ∈ (R2 ×R2 ×R2 ×R2 ×R×R)}, (3.12)

where qi, pi and si are the position, linear momentum and entropy of each mass
i = 1, 2. Due to geometric restrictions, q1 6= 0 and q1 6= q2. The lengths of the
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springs λ1 and λ2 are defined solely in terms of the positions as

λ1 =
√

q1 · q1, λ2 =
√
(q2 − q1) · (q2 − q1).

The total energy of the system can be expressed as the sum of the kinetic energy of
the two masses Ki and the internal energy of the springs ei for i = 1, 2,

E = E(z) =
∑

i

Ki(z) +
∑

i

ei(λi, si),

Ki =
1

2mi
|pi|

2. (3.13)

The total entropy of the double pendulum is the sum of the entropies of the two
masses si,

S = S(z) = s1 + s2. (3.14)

This model includes thermal effects in the stretching of the springs due to the Gough‑
Joule effect. The absolute temperature Ti at each spring is obtained using Eq. (3.15).
These temperature changes induce a heat flux between both springs, being propor‑
tional to the temperature difference and a conductivity constant κ > 0,

Ti =
∂ei

∂si
. (3.15)

In this case, there is a clear contribution of both conservative Hamiltonian mechanics
(mass movement) and non‑Hamiltonian dissipative effects (heat flux), resulting in a
non‑zero Poisson matrix (M 6= 0). Thus, the GENERIC matrices associated with this
physical system are known to be [74]

L =



0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, M =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −1/2
0 0 0 0 −1/2 1


.

Database and Hyperparameters

The training database is generated with a thermodynamically consistent time step‑
ping algorithm [222] in MATLAB. The masses of the double pendulum are set to
m1 = 1 kg and m2 = 2 kg, joint with springs of a natural length of λ0

1 = 2 m and
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λ0
2 = 1 m and thermal constant of C1 = 0.02 J and C2 = 0.2 J and conductivity con‑

stant of κ = 0.5. The simulation time of the movement is T = 60 s in time increments
of ∆t = 0.3 s (NT = 200 snapshots).

The database consists of the state vector, Eq. (3.12), of 50 different trajectories with
random initial conditions of position qi and linear momentum pi of both masses
mi (i = 1, 2) around a mean position and linear momentum of q1 = [4.5, 4.5] m,
p1 = [2, 4.5] kg·m/s, and q2 = [−0.5, 1.5] m, p2 = [1.4, −0.2] kg·m/s respectively.
Although the initial conditions of the simulations are similar, it results in a wide vari‑
ety of the mass trajectories due to the chaotic behaviour of the system. This database
is split randomly in 40 train trajectories and 10 test trajectories. Thus, there is a total
of 8 · 104 training snapshots and 2 · 104 test snapshots.

The net input and output size is Nin = 10 and Nout = 2N2
in = 200. The state vector

is normalized based on the training set statistical mean and standard deviation. The
number of hidden layers is Nh = 5 with ReLU activation functions and linear in the
last layer. It is initialized according to the Kaiming method [92] with normal distri‑
bution and the optimizer used is Adam [128] with a weight decay of λr = 10−5 and
data loss weight of λd = 102. A multistep learning rate scheduler is used, starting in
η = 10−3 and decaying by a factor of γ = 0.1 in epochs 600 and 1200. The training
process ends when a fixed number of epochs Nepoch = 1800 is reached.

The time evolution of the dataLdata and degeneracyLdeg loss terms for each training
epoch are shown in Fig. 3.3.
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[‑]

Ldata

Ldeg

Figure 3.3: Loss evolution of data and degeneracy constraints for each epoch of the structure‑
preserving neural network training process of the double pendulum example.

Results

Fig. 3.4 shows the time evolution of the state variables (position, momentum and
entropy) of each mass given by the solver and the neural net. Table 3.1 shows the
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Figure 3.4: Time evolution of the state variables in a test trajectory of a double themo‑elastic
pendulum using a time‑stepping solver (Ground Truth, GT) and the proposed GENERIC
integration scheme (SPNN). Since every variable has a vectorial character, both components
are depicted and labelled as X and Y, respectively.

mean squared error of the data and degeneration loss terms for all the state variables
of the double pendulum. The results are computed separately as the mean over all
the train and test trajectories using Eq. (3.11).

Last, Fig. 3.5 and Fig. 3.6 show the time evolution of the internal and kinetic energy
and the entropy respectively for the two pendulum masses (i = 1, 2), computed with
Eq. (3.13) and Eq. (3.14). The total energy is conserved and the total entropy satisfies
the entropy inequality, fulfilling the first and second laws of thermodynamics respec‑
tively. The mean error for both train and test trajectories is reported in Table 3.2.
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Table 3.1: Mean squared error of the data loss (MSEdata) and degeneracy loss (MSEdeg) for
all the state variables of the double pendulum.

State Variables MSEdata MSEdeg

Train Test Train Test

q1 [m] X 1.95 · 10−2 3.87 · 10−2 3.56 · 10−8 4.43 · 10−8

Y 2.72 · 10−2 8.21 · 10−2 4.74 · 10−8 5.77 · 10−8

q2 [m] X 2.04 · 10−2 3.65 · 10−2 9.28 · 10−8 8.55 · 10−8

Y 2.72 · 10−2 3.73 · 10−2 3.55 · 10−8 5.01 · 10−8

p1 [kg∙m/s] X 6.43 · 10−4 1.33 · 10−4 4.00 · 10−8 7.08 · 10−8

Y 1.06 · 10−3 4.06 · 10−3 1.21 · 10−7 1.40 · 10−7

p2 [kg∙m/s] X 4.88 · 10−4 9.84 · 10−4 6.00 · 10−8 4.58 · 10−8

Y 8.47 · 10−4 1.79 · 10−4 9.76 · 10−8 1.20 · 10−7

s1 [J/K] 1.21 · 10−5 3.51 · 10−5 1.31 · 10−7 2.06 · 10−7

s2 [J/K] 1.22 · 10−5 3.18 · 10−5 2.40 · 10−7 2.95 · 10−7
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Figure 3.5: Time evolution of the energy in a test trajectory of a double themo‑elastic pendu‑
lum using a time‑stepping solver (Ground Truth, GT) and the proposed GENERIC integra‑
tion scheme (SPNN).
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Figure 3.6: Time evolution of the entropy in a test trajectory of a double themo‑elastic pen‑
dulum using a time‑stepping solver (Ground Truth, GT) and the proposed GENERIC inte‑
gration scheme (SPNN).

Table 3.2: Mean squared error of the energy (MSE (E)) and entropy (MSE (s)) of the double
pendulum.

Variable Train Test

E [J] 7.99 · 10−3 8.86 · 10−3

S [J/K] 6.52 · 10−8 6.33 · 10−8
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3.4.2 Couette Flow of an Oldroyd-B Fluid

Description

The second example is a shear (Couette) flow of an Oldroyd‑B fluid model, see
Fig. 3.7. This is a constitutive model for viscoelastic fluids, consisting of linear elastic
dumbbells (representing polymer chains) immersed in a solvent.

Re, We

Figure 3.7: Couette flow in an Oldroyd‑B fluid.

The Oldroyd‑B model arises in the modelling of flows of diluted polymeric solutions.
This model can be obtained both from a purely macroscopic point of view as well as
from a microscopic one, by modelling polymer chains as linear dumbbells diluted
in a Newtonian substrate. Alternatively, it can also be obtained by considering the
deviatoric part T of the stress tensor σ (the so‑called extra‑stress tensor), to be of the
form

T + λ1
∇
T= η0

(
γ̇ + λ2

∇
γ̇

)
,

where ∇· denotes the non‑linear Oldroyd’s upper‑convected derivative [202]. Coef‑
ficients η0, λ1 and λ2 are model parameters. It is standard to denote the strain rate
tensor by γ̇ = (∇sv) = D. Finally, the stress in the solvent (denoted by a subscript
s) and polymer (denoted by a subscript p) are given by

T = ηsγ̇ + τ,

so that
τ + λ1

∇
τ= ηpγ̇,

which is the constitutive equation for the elastic stress.

Pseudo‑experimental data are obtained by the CONNFFESSIT technique [138], based
on the Fokker‑Plank equation [139]. This equation is solved by converting it in its
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corresponding Itô stochastic differential equation,

drx =

(
∂v
∂y

ry −
1

2We
rx

)
dt +

1√
We

dVt,

dry = − 1
2We

rydt +
1√
We

dWt,

where v is the flow velocity, r = [rx, ry], rx = rx(y, t) the position vector and as‑
suming a Couette flow so that ry = ry(t) depends only on time, We stands for the
Weissenberg number and Vt, Wt are two independent one‑dimensional Brownian
motions. This equation is solved via Monte Carlo techniques, by replacing the math‑
ematical expectation by the empirical mean.

The model relies on the microscopic description of the state of the dumbbells. Thus,
it is particularly useful to base the microscopic description on the evolution of the
conformation tensor c = 〈rr〉, this is, the second moment of the dumbbell end‑to‑end
distance distribution function. This tensor is in general not experimentally measur‑
able and plays the role of an internal variable. The expected xy stress component
tensor will be given by

τ =
ϵ

We
1
K

K∑
k=1

rxry,

where K is the number of simulated dumbbells and ϵ =
νp
νp

is the ratio of the polymer
to solvent viscosities.

The state variables selected for this problem are the position of the fluid on each node
of the mesh, see Fig. 3.7, its velocity v in the x direction, internal energy e and the
conformation tensor shear component τ,

S = {z = (q, v, e, τ) ∈ (R2 ×R×R×R)}. (3.16)

The GENERIC matrices associated with each node of this physical system are the
following

L =


0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 1 −1
0 0 −1 0 0 0
0 0 0 0 0 0

 , M =


0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 1 1 0
0 0 0 0 1

 .

In order to simulate a measurement of real captured data, Gaussian noise is added
to the state vector, computed as a random variable following a normal distribution
with zero mean and standard deviation proportional to the standard deviation of
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the database σz and noise level ν,

zGT
noise = zGT + ν · σz · N (0, 1)

The results of both the noise‑free and the noisy database are compared with two
different network architectures:

• Unconstrained network: This architecture is the same as the proposed network
but removing the degeneracy conditions of the energy and entropy, Eq. (3.6),
in the loss function. These conditions ensure the thermodynamic consistency
of the resulting integrator, so not including them affects negatively in the ac‑
curacy of the results, as will be seen.

• Black‑Box network: In this case, no GENERIC architecture is imposed, acting
as a black‑box integrator trained to directly predict the state vector time evolu‑
tion zt+∆t from the previous time step zt. This naive approach is shown to be
inappropriate, as no physical restrictions are given to the model.

Database and Hyperparameters

The training database for this Oldroyd‑B model is generated in MATLAB with a mul‑
tiscale approach [139] in the dimensionless form. The fluid is discretized in the verti‑
cal direction with N = 100 elements (101 nodes) in a total height of H = 1. A total of
104 dumbells were considered at each nodal location in the model. The lid velocity
is set to V = 1, the viscoelastic Weissenberg number We = 1 and Reynolds number
of Re = 0.1. The simulation time of the movement is T = 1 in time increments of
∆t = 6.7 · 10−3 (NT = 150 snapshots).

The database consisted of the state vector, Eq. (3.16), of the 100 nodes trajectories
(excluding the node at h = H, for which a no‑slip condition v = 0 has been imposed).
This database is split in 80 train trajectories and 20 test trajectories.

The net input and output size is Nin = 5 and Nout = 2N2
in = 50. The number of

hidden layers is Nh = 5 with ReLU activation functions and linear in the last layer.
It is initialized according to the Kaiming method [92], with normal distribution and
the optimizer used is Adam [128], with a weight decay of λr = 10−5 and data loss
weight of λd = 103. A multistep learning rate scheduler is used, starting in η = 10−3

and decaying by a factor of γ = 0.1 in epochs 500 and 1000. The training process
ends when a fixed number of epochs Nepoch = 1500 is reached. The same parameters
are considered also for the noisy database network (ν = 1%) and the unconstrained
network.

The black‑box network training parameters are analogous to the structure‑preserv‑
ing network, except for the output size Nout = Nin = 5. Several network architec‑
tures were tested, and the lowest error is achieved with Nh = 5 hidden layers and
25 neurons each layer.
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Figure 3.8: Loss evolution of data and degeneracy constraints for each epoch of the neural
network training process of the Couette flow example.

The time evolution of the dataLdata and degeneracyLdeg loss terms for each training
epoch are shown in Fig. 3.8.

Results

Fig. 3.9 shows the time evolution of the state variables (position q, velocity v, internal
energy e and conformation tensor shear component τ) given by the solver and the
neural net. There is a good agreement between both plots. Moreover, the proposed
scheme is able to predict the time evolution of the flow for several snapshots beyond
the training simulation time T = 1, as shown in the same figure.

Table 3.3 shows the mean squared error of the data and degeneration loss terms for
all the state variables of the Couette flow of an Oldroyd‑B fluid. The results are com‑
puted separately as the mean over all the train and test trajectories using Eq. (3.11).

Table 3.3: Mean squared error of the data loss (MSEdata) and degeneracy loss (MSEdeg) for
all the state variables of the Couette flow.

State Variables MSEdata MSEdeg

Train Test Train Test

q [‑] X 5.40 · 10−6 6.29 · 10−6 1.72 · 10−7 1.96 · 10−7

Y 0.00 0.00 0.00 0.00
v [‑] 3.23 · 10−5 4.75 · 10−5 1.19 · 10−6 1.48 · 10−6

e [‑] 7.85 · 10−6 6.60 · 10−6 7.06 · 10−7 9.11 · 10−7

τ [‑] 2.36 · 10−5 1.26 · 10−5 1.07 · 10−6 1.31 · 10−6

Fig. 3.10 shows a box plot of the data error (MSEdata) for the train and test sets in the
four studied architectures. The results of the structure‑preserving neural network
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Figure 3.9: Time evolution of the state variables in five test nodes of a Couette flow using
a solver (Ground Truth, GT) and the proposed GENERIC integration scheme (Net). The
dotted vertical line represent the simulation time T = 1 of the training dataset.

outperform the other two approaches even with noisy training data. The error of
the unconstrained neural network is greater than one order of magnitude than our
approach, proving the importance of the degeneracy conditions in the GENERIC
formulation. Last, the naive black‑box approach shows the worst performance of
the four networks, as no physical restriction is considered.

With respect to our previous work [74], that employed a piece‑wise linear regression
approach, these examples show similar levels of accuracy, but a much greater level
of robustness. For instance, this same example was included in the mentioned refer‑
ence. However, in that case, the problem had to be solved with the help of a reduced
order model with only six degrees of freedom, due to the computational burden of
the approach. In our former approach, the GENERIC structure was identified by
piece‑wise linear regression for each of the few global modes of the approximation.
So to speak, in that case, we learnt the characteristics of the flow. Here, on the con‑
trary, the net is able to find an approximation for any velocity value at the 101 nodes
of the mesh—say, fluid particles—without any difficulty. In this case, we are learning
the behavior of fluid particles.
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Figure 3.10: Box plots for the data integration mean squared error (MSEdata) of the Couette
flow in both train and test cases.

3.5 Conclusions
In this chapter we have presented a new methodology to ensure thermodynamic con‑
sistency in the deep learning of physical phenomena. In contrast to existing meth‑
ods, this methodology does not need to know in advance any information related
to balance equations or the precise form of the PDE governing the phenomena at
hand. The method is constructed on top of the right thermodynamic principles that
ensure the fulfillment of the energy dissipation and entropy production. It is valid,
therefore, for conservative as well as dissipative systems, thus overcoming previous
approaches in the field.

When compared with other previous works in the field [74], the present methodol‑
ogy showed to be more robust, allowing us to find approximations for systems with
orders of magnitude more degrees of freedom. This new approach is also less com‑
putationally demanding. For the double pendulum case, the snapshot optimization
of the GENERIC matrices proposed in [74] has a measured performance of 10 min
per trajectory, which add up to 400 minutes considering the 40 studied trajectories,
whereas our new neural‑network approach trains in only 73.18 minutes. The com‑
putational time of the other examples is shown in Table 3.4.

The reported results show good agreement between the network output and the syn‑
thetic ground truth solution, even with moderate noisy data. We have also shown
the importance of including the degeneracy conditions of the GENERIC formulation
to the neural network constraints, as it ensures the thermodynamical consistency of
the integrator. The structure‑preserving neural network outperforms other naive
black‑box approaches, since the physical constraints act as an inductive bias, facili‑
tating the learning process.
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Table 3.4: Computation training time of the proposed algorithm for the two reported exam‑
ples in the noise‑free networks.

Example Epoch Time Total Time

Double Pendulum 2.44 s/epoch 73.18 min
Couette Flow 1.22 s/epoch 30.53 min

However, this method has several limitations. The discrete gradients of the state
vector in the GENERIC formulation are here approximated with two gradient oper‑
ators. Furthermore, the Poisson and friction matrices are considered to be known
in advance. This is not the general case, because the dynamical data might have
completely unknown governing equations or the integration scheme is applied to
latent vectors in a reduced order model. These limitations are addressed in the next
chapters.
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Thermodynamics-Informed
Graph Neural Networks 4

In this chapter we extend the formulation in Chapter 3 using both geometric and
thermodynamic inductive biases to improve accuracy and generalization of the re‑
sulting integration scheme. The geometric prior is achieved with graph neural net‑
works, which induce a non‑Euclidean geometrical prior with permutation invariant
node and edge update functions. Several examples are provided in both Eulerian
and Lagrangian descriptions in the context of fluid and solid mechanics respectively,
achieving relative mean errors of less than 3% in all the tested examples. Two abla‑
tion studies are also performed based on recent works in both physics‑informed and
geometric deep learning. The content of this chapter is included in the following
publication [98]:

Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Thermodynamics‑informed graph neural networks

IEEE Transactions on Artificial Intelligence, DOI: 10.1109/TAI.2022.3179681 (2022)

4.1 Introduction
We have already seen in Chapter 3 that it is possible to learn the correct thermo‑
dynamical structure of simple systems in order to predict their evolution in time.
However, real world physical systems might require the use of unstructured grids
in order to capture the complex geometric details of the domain. So it is not only
important to take into account the mathematical structure of the problem, but also
the geometrical domain in which it is formulated.

In Section 2.1 we already saw how the first simple deep learning architectures, such
as the multilayer perceptron and the vanilla autoencoder, were modified with ad‑
ditional inductive biases that account for the peculiarities of the data structure of
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each problem. These kind of architectures are studied in the geometric deep learn‑
ing field, which treats all sort of data structures in terms of graph and group theory,
as explained in Section 2.2.

The present chapter aims to extend the thermodynamical biases developed in Chap‑
ter 3 with additional geometrical biases based on the principles of geometric deep
learning, in order to learn a physical simulator of complex systems in the context of
fluid and solid mechanics.

4.2 Methodology
In this chapter, we again guarantee the physical meaning of the solution by enforcing
the GENERIC structure of the system. We make use of this constraint to construct
a thermodynamically‑sound integrator, acting as the first inductive bias of our ap‑
proach called the metriplectic bias. This integration is performed using a forward
Euler scheme with time increment ∆t and the GENERIC formalism in Eq. (2.10), re‑
sulting in the following expression

zt+∆t = zt + ∆t
(

L
∂E
∂zt

+ M
∂S
∂zt

)
. (4.1)

Unlike in Chapter 3, here we consider that no prior information about the L and M
operators is known. We also do not approximate the discrete gradients, but we learn
the energy E and entropy S potentials of the particles in the domain. We propose the
use of graph‑based deep learning, which exploits the geometrical structure of that
specific domain.

4.2.1 Geometric Structure: Graph Neural Networks
Let G = (V , E , u) be a directed graph, where V = {1, ..., n} is a set of |V| = n vertices,
E ⊆ V × V is a set of |E | = e edges and u ∈ RFg is the global feature vector. Each
vertex and edge in the graph is associated with a node and a pairwise interaction be‑
tween nodes respectively in a discretized physical system. The global feature vector
defines the properties shared by all the nodes in the graph, such as gravity or elas‑
tic properties. For each vertex i ∈ V we associate a feature vector vi ∈ RFv , which
represents the physical properties of each individual node. Similarly, for each edge
(i, j) ∈ E we associate an edge feature vector eij ∈ RFe .

In practice, the positional state variables of the system (qi) are assigned to the edge
feature vector eij so the edge features represent relative distances (qij = qi − qj)
between nodes, giving a distance‑based attentional flavour to the graph network
[181, 259, 279] and translational invariance [268, 237]. The rest of the state variables
are assigned to the node feature vector vi. The external interactions, such as forces
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applied to the system, are included in an external load vector f i. A simplified scheme
of the graph codification of a physical system is depicted in Fig. 4.1.

Figure 4.1: Left: Physical system domain discretized in a mesh with node state variables zi,
relative nodal distances qij, external interactions f i and global properties u. Right: Graph
representation of the same system, with node and edge attributes: vi and eij.

These features are fed into an encode‑process‑decode scheme [14], which consists on
several multilayer perceptrons (MLPs) shared between all the nodes and edges of
the graph. The algorithm consists of five steps (Fig. 4.2):

Encoding

We use two MLPs (εv, εe) to transform the vertex and edge initial feature vectors into
higher‑dimensional embeddings xi ∈ RFh and xij ∈ RFh respectively,

εe : RFe −→ RFh

eij 7−→ xij,

εv : RFv −→ RFh

vi 7−→ xi.

Processing

The processor is the core task of the algorithm, as it shares the nodal information
between vertices via message passing and modifies the hidden vectors in order to
extract the desired output of the system. First, a MLP (πe) computes the updated
edge features x′ij for each graph edge, based on the current edge features, global
features, and sending and recieving node,

πe : R3Fh+Fg −→ RFh

(xij, xi, xj, u) 7−→ x′ij.

Then, for each node the messages are pooled with a permutation invariant function
ϕ based on the neighborhood Ni = {j ∈ V | (i, j) ∈ E} of the node i. Last, the node
embeddings are updated with a second MLP (πv) using the current node features,
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the pooled messages, the external load vector and the global features,

πv : R2Fh+Ff +Fg −→ RFh

(xi, ϕ(x′ij), f i, u) 7−→ x′i,

where x′i and x′ij are the updated nodal and edge latent vectors.

The processing step is equivalent to the message passing [69] of 1‑step adjacent nodes.
In order to get the influence of further graph nodes, the process can be recurrently
repeated with both shared or unshared parameters in M processing blocks and op‑
tionally using residual connections [91]. In this approach, we use both unshared
parameters and residual connections to each message passing block and sum as
aggregation function ϕ. Note that the computed messages ϕ(x′ij) represent a hid‑
den embedding of the intermolecular interactions of the system (internal messages)
whereas the vector f i accounts for the external interactions (external messages).

Decoding

The last block extracts the relevant physical output information yi ∈ RFy of the sys‑
tem from the node latent feature vector, implemented with a MLP (δv). In this work,
we predict for each particle the GENERIC energy E and entropy S potentials and the
flattened operators l and m:

δv : RFh −→ RFy

x′i 7−→ yi = (l, m, E, S).

Reparametrization

A last processing step is needed to get the GENERIC parameters before integrating
the state variables. Both operators in matrix form L and M are constructed using the
flattened output of the graph neural network l and m respectively, reshaped in lower‑
triangular matrices. The skew‑symmetric and positive semi‑definite conditions are
imposed by construction using the following parametrization:

L = l − l>, M = mm>.

Both E and S are directly predicted for every node. Then, these potentials can be dif‑
ferentiated with respect to the network input in order to get the gradients ∂E

∂z and ∂S
∂z

needed for the GENERIC integrator. These gradients are easily obtained using auto‑
matic differentiation [204], and ensures the integrability of the energy and entropy
gradients [247].
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(a) Encoder

...

...

(b) Processor (c) Decoder (d) Reparametrization (e) Integrator

Edge block Node block

Figure 4.2: Algorithm block scheme used to predict a single‑step state variable change in
time. (a) The encoder transforms the node and edge features to a learnt embedding. (b) The
processor shares the nodal information through the graph via M message passing modules.
(c) The decoder extracts the GENERIC flattened operators and potentials from the processed
node embeddings. (d) The reparametrization step builds the symmetries of the L and M
operators and computes the potential gradients with respect to the network input. (e) The
integrator predicts the next time step state variables based on the GENERIC formulation.
The whole process is repeated iteratively to get the dynamical rollout of the physical system.

Considering the dimensions of the lower triangular matrices and the scalar value of
both potentials, the output dimension of the decoder network is

Fy =
n(n + 1)

2
+

n(n− 1)
2

+ 1 + 1,

where n represents the dimension of the state variables z.

Integration

The single‑step integration of the state variables of the system zt → zt+∆t is then
performed using Eq. (4.1).

4.2.2 Learning Procedure
In this case, the complete datasetD is again composed by Nsim multiparametric simu‑
lation cases of a dynamical system evolving in time, in a one‑step supervision similar
to the previous chapter. The partition in this case is 80% training, 10% test and 10%
validation sets: Dtrain, Dval and Dtest respectively. The loss function is divided in
two terms:

• Data loss: This term accounts for the correct prediction of the state vector time
evolution using the GENERIC integrator. It is defined as the MSE along the
graph nodes and state variables between the predicted and the ground‑truth
time derivative of the state vector in a given snapshot,

Ldata =

∥∥∥∥dzGT

dt
− dznet

dt

∥∥∥∥2

2
.
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The choice of the time derivative instead of the state vector itself is to regularize
the global loss function to a uniform order of magnitude with respect to the
degeneracy terms, as shown in Eq. (4.1).

• Degeneracy loss: This condition is added to the optimization in order to force
the degeneracy conditions of the Poisson and dissipative operators, which en‑
sure thermodynamical consistency of the integrator. It is defined as the MSE
along the graph nodes and state variables of two residual terms corresponding
to the energy and entropy degeneracy conditions,

Ldeg =

∥∥∥∥L
∂S
∂zt

∥∥∥∥2

2
+

∥∥∥∥M
∂E
∂zt

∥∥∥∥2

2
.

Alternative approaches were later developed in the literature to impose these
degeneracy restrictions, such as a specific tensor parametrization of the brack‑
ets [143] or forcing orthogonality using additional skew‑symmetric matrices
[282]. However, we decide to include it as a soft constraint in order to allow
more flexibility in the learning process and improve convergence while main‑
taining the degeneracy conditions up to an admissible error.

The global loss term is a weighted mean of the two terms over the shuffled Nbatch
batched snapshots,

L =
1

Nbatch

Nbatch∑
n=0

(λdLdata
n + Ldeg

n ).

As the energy and entropy are supervised only by their gradients, we remark that (i)
they are learnt up to an integration constant value and (ii) the activation functions
must have a sufficient degree of continuity. To meet this second requirement, one
must select activations with non‑zero second derivative in order to have a correct
backpropagation of the weights and biases. Thus, linear or rectified units (ReLU,
Leaky ReLU, RReLU) are not appropriate for this task. It is well known [105] that lo‑
gistic functions such as sigmoid and hyperbolic tangent are universal approximators
of any derivative arbitrarily well, but are not optimal for verydeep neural network ar‑
chitectures, as they suffer from several problems such as vanishing gradients. Then,
the correct activation functions suitable for learning gradients are the ones which
combine both non‑zero second derivatives and ReLU‑type non‑linearities, such as
Softplus, Swish [215] or Mish [177]. In the present work we use the Swish activation
function.

The inputs and outputs of the networks are standardized using the training dataset
statistics. Gaussian noise is also added to the inputs during training in order to
model the accumulation of error during the time integration [207], which is not con‑
templated in a single‑snapshot training, with the variance of the noise σ2

noise as a
tunable hyperparameter and zero mean value. All the cases are optimized using
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Adam [128] and a multistep learning rate scheduler. The code is fully implemented
in Pytorch.

4.2.3 EvaluationMetrics
Two ablation studies are performed to evaluate the method presented in this work,
fromnow thermodynamics‑informed graphneural networks (TIGNN). The first case
is performed using only graph neural networks (from now, GNN) with similar ar‑
chitecture and learning procedure used in prior works [231, 207] and no metriplectic
integrator. In the second case, we impose the metriplectic structure developed in
Chapter 3 (from now, SPNN), using standard MLPs with no graph computations.
Both alternative methods are tuned for equal parameter count in order to get a fair
comparison of the results.

All the results are computed with the integration scheme in Eq. (4.1) iteratively from
the initial conditions to the prescribed time horizon T, denoted as rollout. The rollout
prediction error is quantified by the relative L2 error, computed with Eq. (4.2) for
each snapshot and simulation case,

ε =
‖zGT − znet‖2

‖zGT‖2
. (4.2)

The results are represented in Fig. 4.8, 4.9 and 4.10 showing the rollout statistics for
all the snapshots divided in train and test simulations, state variables and method
used (TIGNN, GNN or SPNN).

4.3 Experiments

4.3.1 Couette Flow of an Oldroyd-B Fluid

Description

The first example is the same Couette flow as in Chapter 3. For the complete de‑
scription of the system, refer to Section 3.4.2. The state variables chosen are again
the position of the fluid on each node of the mesh q, its velocity v in the x direction,
internal energy e and the conformation tensor shear component τ, as in Eq. (5.13).

The edge feature vector contains the relative position of the nodes whereas the rest of
the state variables are part of the node feature vector. An additional one‑hot vector
n is added to the node features in order to represent the boundary and fluid nodes.
The global feature vector u represent the Weissenberg and Reynolds numbers of each
simulation, resulting in the following feature vectors:

eij = (qi − qj, ‖qi − qj‖2), vi = (v, e, τ, n), u = (Re, We). (4.3)
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Database and Hyperparameters

The training database for the Couette flow is generated with the CONNFFESSIT tech‑
nique [138], based on the Fokker‑Plank equation [139], using a Monte Carlo algo‑
rithm. The fluid is discretized in the vertical direction with Ne = 100 elements and
N = 101 nodes in a total height of H = 1. A total of 10,000 dumbells are considered
at each nodal location in the model. The lid velocity is set to V = 1, with variable
Weissenberg We ∈ [1, 2] and Reynolds number Re ∈ [0.1, 1], summing a total of
Nsim = 100 cases. The simulation is discretized in NT = 150 time increments of
∆t = 6.7 · 10−3.

Following Eq. (4.3), the dimensions of the graph feature vectors are Fe = 3, Fv = 5
and Fg = 2. The hidden dimension of the node and edge latent vectors is Fh = 10.
The learning rate is set to lr = 10−3 with decreasing order of magnitude on epochs
2000 and 4000, and a total number of Nepoch = 6000. The training noise variance is
set to σ2

noise = 10−2.

Results

The rollout results for the Couette flow are presented in Fig. 4.8. A substantial im‑
provement is shown in the present approach over the two other methods, which
remain in a similar performance. Note that the skewed distributions towards higher
errors on each box is due to the error accumulation on snapshots further in time from
the starting conditions, where errors are lower. Fig. 4.7 (left) shows that the degen‑
eracy conditions imposed by our method ensure the thermodynamical consistency
of the learnt energy and entropy potentials.

4.3.2 Viscoelastic Bending Beam

Description

The next example is a prismatic viscoelastic cantilever beam subjected to a bending
force, as depicted in Fig. 4.3. The state variables for the viscoelastic beam on each
node are the position q, velocity v and stress tensor σ,

S = {z = (q, v, σ) ∈ R3 ×R3 ×R6}.

The material is characterized by a single‑term polynomial strain energy potential,
described by the following equation

U = C10(I1 − 3) + C01(I2 − 3) +
1

D1
(Jel − 1)2

where U is the strain energy potential, Jel is the elastic volume ratio, I1 and I2 are the
two invariants of the left Cauchy‑Green deformation tensor, C10 and C01 are shear
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Figure 4.3: Viscoelastic beam problem with a load case. The load position and direction are
modified on each simulation, obtaining different stress fields.

material constants and D1 is the material compressibility parameter. The viscoelas‑
tic component is described by a two‑term Prony series of the dimensionless shear
relaxation modulus,

gR(t) = 1− ḡ1(1− e
−t
τ1 )− ḡ2(1− e

−t
τ2 ),

with relaxation coefficients of ḡ1 and ḡ2, and relaxation times of τ1 and τ2.

The relative deformed position is included into the edge feature vector whereas the
rest of the variables are part of the node feature vector. An additional one‑hot vector
n is added to the node features in order to represent the encastre and beam nodes.
The external load vector F is included in the node processor MLP as an external
interaction. No global feature vector is needed in this case, resulting in the following
feature vectors:

eij = (qi − qj, ‖qi − qj‖2), vi = (v, σ, n). (4.4)

Database and Hyperparameters

The prismatic beam dimensions are H = 10, W = 10 and L = 40, discretized in Ne =

500 hexahedral linear brick elements and N = 756 nodes. The material hyperelastic
and viscoelastic parameters are C10 = 1.5 · 105, C01 = 5 · 103, D1 = 10−7 and ḡ1 =

0.3, ḡ2 = 0.49, τ1 = 0.2, τ2 = 0.5 respectively. A distributed load of F = 105 is
applied in Nsim = 52 different positions with an orientation perpendicular to the
solid surface. The quasi‑static simulation is discretized in NT = 20 time increments
of ∆t = 5 · 10−2.

Following Eq. (4.4), the dimensions of the graph feature vectors are Fe = 4, Fv = 11
and Fg = 0. The hidden dimension of the node and edge latent vectors is Fh = 50.
The learning rate is set to lr = 10−4 with decreasing order of magnitude on epochs
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600 and 1200, and a total number of Nepoch = 1800. The training noise variance is
set to σ2

noise = 10−5.

Results

The rollout results for the bending viscoelastic beam are presented in Fig. 4.9. The
errors achieved by the present approach are again below the other two methods. The
beam deformed configuration of three different test simulation snapshots are repre‑
sented in Fig. 4.4, with the color code representing the xx component of the stress
tensor. Similarly to the previous case, Fig. 4.7 (center) shows the thermodynamical
consistency of our dynamical integration.

Figure 4.4: Top: Representation of a snapshot of three test simulations, i.e. not seen by the
network on training, of the bending beam problem. Bottom: Their respective ground truth
simulations. The color code represents the xx component of the dimensionless stress tensor,
scaled ×0.001.

4.3.3 Flow Past a Cylinder

Description

The last example consists of a viscous unsteady flow past a cylinder obstacle. The
flow conditions are set to obtain varying Reynolds regimes, which result in Kármán
vortex street and therefore a periodic behaviour in the steady state, see Fig. 4.5. The
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Figure 4.5: Unsteady flow past a cylinder obstacle. The flow velocity and cylinder obstacle
position are varied to obtain different Reynolds numbers and flow profiles.

state variables for the flow past a cylinder are the velocity v and the pressure field P,

S = {z = (v, P) ∈ R2 ×R}.

The flow is computed with an Eulerian description of the output fields. Thus, the
nodal coordinates (q0) are fixed in space and considered as edge features, whereas
the whole state variables are assigned to the node features. An additional one‑hot
vector n is added to the node features in order to represent the inlet/outlet, walls or
fluid nodes. No global feature vector is needed in this case, resulting in the following
feature vectors:

eij = (q0
i − q0

j , ‖q0
i − q0

j ‖2), vi = (v, P, n). (4.5)

Database and Hyperparameters

The ground truth simulations are computed solving the 2D Navier Stokes equa‑
tions. Six different obstacle positions are simulated with varying fluid discretization,
which consist of approximately Ne = 1100 quadrilateral elements and N = 1200
nodes. No‑slip conditions are forced in the stream walls and the cylinder obstacle.
The fluid has a density of ρ = 1 and a dynamic viscosity of µ = 10−3. The variable
freestream velocity is contained within the interval v ∈ [1, 2], summing a total of
Nsim = 30 cases. The unsteady simulation is discretized in NT = 300 time incre‑
ments of ∆t = 10−2.

Following Eq. (4.5), the dimensions of the graph feature vectors are Fe = 3, Fv = 8
and Fg = 0. The hidden dimension of the node and edge latent vectors is Fh = 128.
The learning rate is set to lr = 10−4 with decreasing order of magnitude on epochs
600 and 1200, and a total number of Nepoch = 2000. The training noise variance is
set to σ2

noise = 4 · 10−4.

69



Chapter 4. Thermodynamics‑Informed Graph Neural Networks

Results

The rollout results for the flow past a cylinder problem are presented in Fig. 4.10. In
this example the domain varies significantly, using a different unstructured mesh for
each simulation. Thus, the graph‑based architectures outperform the vanilla SPNN,
which is meant for fixed structured problems. Considering the other two methods,
our new approach outperforms the standard GNN architecture due to the metriplec‑
tic structure imposition over the dynamical problem, as depicted in Fig. 4.7. A single
snapshot of the whole rollout of three different test simulations are represented in
Fig. 4.6, with the color code representing the x component of the velocity field.

Figure 4.6: Top: Representation of a snapshot of three test simulations, i.e. not seen by the
network on training, of the cylinder flow problem. Bottom: Their respective ground truth
simulations. The color code represents the x component of the dimensionless velocity field.
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Figure 4.7: Conservation of energy and non‑decreasing entropy potentials for a test case of
the (a) Couette flow, (b) bending beam and (c) cylinder flow. Both quantities are averaged
across all graph nodes for visualization.

4.4 Conclusions
We have presented a method to predict the time evolution of an arbitrary dynamical
system based on two inductive biases. The metriplectic bias ensures the correct ther‑
modynamic structure of the integrator based on the GENERIC formalism, whose
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operators and potentials are estimated using computations over graphs, i.e. exploit‑
ing the geometric structure of the problem. The results show relative mean errors of
less than 3% in all the tested examples, outperforming two other state‑of‑the‑art tech‑
niques based on only physics‑informed and geometric deep learning respectively.

These results confirm that both biases are necessary to achieve higher precision in
the predicted simulations. The use of both techniques combines the computational
power of geometric deep learning with the rigorous foundation of the GENERIC
formalism, which ensures the thermodynamical consistency of the results.

The limitations of the presented technique are related to the computational complex‑
ity of the model. Large simulations with fine grids require a high amount of mes‑
sage passing to get the information across the whole domain, or a very fine time
discretization, which both result in a high computational cost. Similarly, high‑speed
phenomena in relation to the wave velocity of the medium might be impossible to
model. In Chapter 8 we discuss different techniques which may overcome the pre‑
sented limitations as future work.
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Figure 4.8: Box plots for the relative L2 error for all the rollout snapshots of the Couette flow
in both train and test cases. The state variables represented are (a) position, (b) velocity, (c)
energy and (d) conformation tensor.
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Figure 4.9: Box plots for the relative L2 error for all the rollout snapshots of the bending
viscoelastic beam in both train and test cases. The state variables represented are (a) position,
(b) velocity, and (c) stress tensor.
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Latent Manifold Learning





Thermodynamics-Aware
Model Order Reduction 5

In this chapter, we present an algorithm to learn the relevant latent variables of a
large‑scale discretized physical system and predict its time evolution using thermo‑
dynamically‑consistent deep neural networks. Our method relies on sparse autoen‑
coders, which reduce the dimensionality of the full order model to a set of sparse
latent variables with no prior knowledge of the coded space dimensionality. Then, a
second neural network is trained to learn the metriplectic structure of these reduced
physical variables and predict its time evolution with a structure‑preserving neural
network presented in Chapter 3. The integrated paths can then be decoded to the
original full‑dimensional manifold and be compared to the ground truth solution.
This method is tested with two examples applied to fluid and solid mechanics. The
content of this chapter is included in the following publication [95]:

Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Deep learning of thermodynamics‑aware reduced‑order models from data

Computer Methods in Applied Mechanics and Engineering, 379, 113763 (2021)

5.1 Introduction
Physical simulation has become an indispensable tool for engineers to recreate the
operative conditions of a mechanical system and make decisions about its optimal de‑
sign, ranging from composite building structures to complex fluid‑solid interaction
CFD simulations. These phenomena are often discretized in fine meshes resulting
in millions of degrees of freedom, which are computationally expensive to handle,
but their solutions are contained in lower‑dimensional spaces. This is the so‑called
manifold hypothesis [57].

Thus, several methods try to overcome this inconvenience by reducing the dimen‑
sionality of the problem, computing a suitable reduced basis and projecting the full
order model on it. The very first projection‑based model order reduction (MOR)
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methods relied on linear transformations with some additional constraints, such as
Proper Orthogonal Decomposition (POD) [194, 47], Reduced‑Basis technique [210]
or Galerkin projection [225, 55]. However, these linear mappings are only locally ac‑
curate, so they fail in modeling more complex nonlinear phenomena and sometimes
require prior information about the governing equations of the problem physics.

In order to overcome these limitations, several techniques have been developed in
the machine learning framework that provide nonlinear mappings, such as Locally
Linear Embedding (LLE) [10], Topological Data Analysis (TDA) [186], kernel Prin‑
cipal Component Analysis (k‑PCA) [187] or Neural Networks, by means of Autoen‑
coders [76]. In the present work we focus on this last method, which has proven
to learn highly nonlinear manifolds in a wide variety of fields such as physics [54],
chemistry [153], mechanics [144] or computational imaging [170]. Autoencoders
used as a model reduction tool, project the original data (assumed to form a high‑
order manifold) to a reduced manifold. However, most of the current works rely on
prior knowledge, or parametric search, of the optimal latent dimensionality of the
problem. Here lies one of the key concepts of our method, which is able to learn a
sparse representation of the latent space within a given reconstruction error bound.

The networks presented in Chapter 3 result in a thermodynamically‑consistent in‑
tegrator that is valid for both conservative (Hamiltonian) and dissipative systems.
However, these networks operate only on full‑order descriptions of the system, re‑
sulting in a costly procedure with limited engineering applicability for systems of
tens of thousands to millions of degrees of freedom. The aim of this work is to ap‑
ply this algorithm to more complex dynamical systems, combined with the nonlin‑
ear model order reduction power of autoencoders. The proposed methodology is
a completely general method that is able to unveil the true effective dimensionality
of the sampled data with no user intervention, and to construct from it a reduced‑
order integrator of the dynamics of the system with no previous knowledge on the
nature of the system at hand. The resulting full‑order reconstructions of the dynam‑
ics are guaranteed to conserve energy and dissipate entropy, as dictated by the laws
of thermodynamics.

5.2 Problem Statement
We again consider a system whose governing variables will be hereafter denoted
by z ∈ M ⊆ RD, with M the state space of these variables, which is assumed
to have the structure of a differentiable manifold in RD. The full‑order model of a
given physical phenomenon can be expressed as a system of differential equations
encoding the time evolution of a set of governing variables z as in Eq. (3.1).

The dimensionality reduction technique, in addition, seeks a simplified representa‑
tion of the full‑order state vector z through a set of latent, reduced variables x ∈ N ⊆
Rd contained in a trialmanifold with reduced dimensionality, lower than the original
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spaceM. The mapping between both spaces can be denoted by φ :M⊆ RD → Rd

with d� D. Similarly, the inverse mapping φ−1 allows to undo the transformation,
returning to the original full‑order space.

The goal of this chapter is to find the convenient mapping φ for a dynamical system
governed by Eq. (3.1) in order to efficiently learn the underlying physics in the re‑
duced spaceN and then predict its time evolution. The solution is forced to fulfil the
basic thermodynamic requirements of energy conservation and entropy inequality
restrictions via the GENERIC formalism.

5.3 Methodology
The proposed algorithm divides the problem in two main steps, sketched in Fig. 5.1.
First, the full order model is encoded to a reduced manifold with a nonlinear map‑
ping via an autoencoder [144]. This autoencoder learns a latent representation of a
state vector of a physical system, in order to handle a wide amount of simulation
data in a compact form. The full order simulation data presented in this work is
generated in silico, but the same procedure could be applied to measured data in a
real physical system.
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Figure 5.1: Block diagram of the proposed algorithm xSAE
t . Snapshots of the rolling tire prob‑

lem have been included for illustration purposes. Top: A sparse autoencoder (SAE) is trained
with time snapshots of a ground truth physical simulation, in order to learn an encoded rep‑
resentation of the full‑order space. Bottom: A structure‑preserving neural network (SPNN)
is trained to integrate the full time evolution of the latent variables, consistently with the
GENERIC structure of the underlying physics of the problem.
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Secondly, a structure‑preserving neural network from Chapter 3 is trained with sev‑
eral snapshots of the physical simulation. This integration scheme preserves the ther‑
modynamic structure of the latent variables in the reduced manifold [199] ensuring
the basic laws of thermodynamics of energy conservation and entropy inequality.
These integrated variables are then projected back to the original manifold of the
full order model with the decoder, as depicted in Fig. 5.1.

5.3.1 Model Reduction with Sparse-Autoencoders
As already explained in Section 2.1, an autoencoder is composed by an encoder qϕ,
which maps high‑dimensional data z ∈ RD onto a low‑dimensional code x ∈ Rd

with d� D, and a decoder pθ, which applies the inverse mapping back to the origi‑
nal full‑order manifold,

qϕ : RD → Rd, x = qϕ(z),

pθ : Rd → RD, ẑ = pθ(x).

The vector z will be referred to as the full order vector, whereas its coded vector x
is the latent variable. In this work, we use a bottleneck architecture composed by
several stacked fully‑connected hidden layers Nh in both the encoder and decoder.
Each layer is modelled as a multilayer perceptron (MLP), defined as Eq. (2.1).

The latent vector dimensionality d in Eq. (5.1) is, a priori, unknown. Thus, we add a
sparsity condition to the bottleneck to force the autoencoder to learn the number of
latent variables needed to encode the necessary information of the full order model.
Even if the latent layer has a fixed number of units Nd, the sparsity penalizer is able
to find (at least a good approximation to) the intrinsic dimensionality of the low‑
dimensional data x. Here, no prior on the reduced dimension is needed. Thus, fur‑
ther in this text, the autoencoder with sparsity regularization is referred as sparse
autoencoder (SAE).

The loss function for our neural network is composed of two different terms:

• Reconstruction loss: This term minimizes the difference between the ground
truth vector zGT

t and the autoencoder reconstruction zSAE
t in the snapshot n.

This enforces the network to learn the identity function,

Lrec =
∥∥∥zGT

t − zSAE
t

∥∥∥2

2
. (5.3)

• Regularization: In order to impose the sparsity of the latent vector, several
regularizers can be used [192]. Due to the continuous nature of the physical
data, it is found more convenient to use L1‑norm penalizer, which enforces
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hard zeros in the latent variables that are not relevant,

Lreg =

Nd∑
i=1

|xSAE
i |. (5.4)

The temporal snapshots of the physical simulations are split in a partition of train
snapshots (Ntrain = 80% of the database snapshots) and test snapshots (Ntest = 20%
of the database snapshots) so that NT = Ntrain + Ntest. The total loss function is
computed as the mean squared error (MSE) of the data reconstruction loss and the
sparsity regularization term for the train snapshots. The sparsity loss is multiplied by
a regularization hyperparameter λSAE

r , which is responsible for the trade‑off between
the reconstruction fidelity of the autoencoder and the sparsity of the latent vector x,

LSAE =
1

Ntrain

Ntrain∑
n=0

(Lrec
n + λSAE

r Lreg
n ). (5.5)

The backpropagation algorithm [204] is then used to calculate the gradient of the
loss function for each encoder and decoder parameters ϕ and θ (weight and bias vec‑
tors of both blocks), which are updated with the gradient descent technique [226].
An overview of the training and testing algorithms of the SAE are sketched in Algo‑
rithm 3 and Algorithm 4.

Algorithm 3: Pseudocode for the training algorithm of the Sparse‑Autoencoder.

Load database: zGT (train partition);
Define network architecture: NSAE

in = NSAE
out = D, NSAE

h , NSAE
d , σSAE

j ;
Define hyperparameters: lSAE

r , λSAE
r ;

Initialize wSAE
i,j , bSAE

j ;
for epoch← 1 : Nepoch do

Initialize loss function: C = 0;
for train_case← 1 : Ntrain do

Encoder: xSAE
t = qϕ(zGT

t ); ▷ Eq. (5.1)
Decoder: zSAE

t = pθ(xSAE
t ); ▷ Eq. (5.2)

Loss function: C ← C + Lrec + λSAE
r Lreg; ▷ Eq. (5.3)–(5.4)

end for
MSE loss function: LSAE ← C

Ntrain
▷ Eq. (5.5)

Backward propagation;
Optimizer step;

end for

Once the problem is reduced to a lower‑dimensional manifold, a second neural net‑
work can be trained to learn the underlying physics of the problem, being able to
integrate the whole simulation trajectory with thermodynamic consistency.
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Algorithm 4: Pseudocode for the test algorithm of the Sparse‑Autoencoder.

Load database: zGT (test partition);
Load network parameters;
for test_case← 1 : Ntest do

Encoder: xSAE
t = qϕ(zGT

t ); ▷ Eq. (5.1)
Decoder: zSAE

t = pθ(xSAE
t ); ▷ Eq. (5.2)

Compute Squared Error: ε2 =
(
zGT

t − zSAE
t

)2; ▷ Eq. (5.11)
end for
Compute MSESAE (z); ▷ Eq. (5.11)

5.3.2 Structure-Preserving Neural Networks
We use a structure‑preserving neural network (SPNN) presented in Chapter 3 to
impose the GENERIC structured in the discretized approach,

xt+∆t = xt + ∆t
(

L
DE
Dxt

+ M
DS
Dxt

)
, (5.6)

subject to

L
DS
Dxt

= 0, M
DE
Dxt

= 0,

ensuring the thermodynamical consistency of the resulting model. From now on,
the energy and entropy gradients will be shortened as DE

Dxt
≡ DE and DS

Dxt
≡ DS.

Unlike in Chapter 3, the GENERIC structure is imposed to the reduced order model
[79] learnt by the sparse autoencoder, so there is no prior information about the L
and M matrices. Instead, the SPNN is forced to automatically learn them on each
learning set time step with their respective skew‑symmetric and symmetric condi‑
tions. Similarly, the energy and entropy gradients are computed on each time step
and no finite‑difference approach is needed.

The input of the neural network is the encoded vector state of a given time step
xSAE

t = qϕ(zGT
t ), and the outputs are the concatenated GENERIC matrices (L, M) and

energy and entropy gradient matrices (DE, DS). Then, using the GENERIC forward
integration scheme in Eq. (5.6), the reduced state vector at the next time step xSPNN

t+∆t
is obtained.

Thus, the input dimension of the SPNN is the same as the dimension of the spar‑
sified latent variables xSAE

t (NSPNN
in = d). Consequently, the GENERIC matrices L

and M are squared with dimension d2 each, which can be reduced to d(d − 1)/2
and d(d + 1)/2 taking into account the skew‑symmetric and symmetric elements re‑
spectively. Additionally, the matrix M is assembled by taking the absolute value of
the diagonal elements of the resulting lower triangular matrix and multiplying it by
its transpose. By the Cholesky factorization, this ensures that M is positive semidefi‑
nite. The energy and entropy gradient matricesDE andDS have the same dimension
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d as the state vector. The final output dimension of the integrator network is then
NSPNN

out = d(d + 1)/2 + d(d− 1)/2 + 2d = d(d + 2).

The loss function for the SPNN is composed of three different terms:

• Data loss: The main loss condition is the agreement between the network out‑
put and the real data. It is computed as the squared error sum, computed
between the predicted state vector xSPNN

t+∆t and the ground truth solution based
on the SAE output xSAE

t+∆t for each time step,

Ldata =
∥∥∥xSAE

t+∆t − xSPNN
t+∆t

∥∥∥2

2
. (5.7)

• Fulfillment of the degeneracy conditions: The loss function will also account
for the degeneracy conditions in order to ensure the thermodynamic consis‑
tency of the solution, implemented as the sum of the squared elements of the
degeneracy vectors for each time step,

Ldeg = ‖LDS‖2
2 + ‖MDE‖2

2 . (5.8)

This term acts as a regularization of the loss function and, at the same time,
is the responsible of ensuring thermodynamic consistency of the integration
scheme.

• Regularization: In order to avoid overfitting, an extra L2 regularization term
Lreg is added to the loss function,

Lreg =
L∑
l

n[l]∑
i

n[l+1]∑
j

(w[l],SPNN
i,j )2. (5.9)

The same database split procedure is followed as in the SAE, dividing the complete
dataset of NT snapshots in a partition of train snapshots (Ntrain = 80% of the database
snapshots) and test snapshots (Ntest = 20% of the database snapshots) so that NT =

Ntrain + Ntest. The total loss function is computed as the mean squared error (MSE)
of the data loss and degeneracy residual, in addition to the regularization term, for
all the training snapshots of the simulation time T. Both the data loss error and
the regularization terms are weighted with two additional hyperparameters λSPNN

d
and λSPNN

r respectively, which account for their relative influence in the total loss
function with respect to the degeneracy constraint,

LSPNN =
1

Ntrain

Ntrain∑
n=0

(λSPNN
d Ldata

n + Ldeg
n ) + λSPNN

r Lreg. (5.10)
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The usual backpropagation algorithm [204] is then used to calculate the gradient of
the loss function for each net parameter (weight and bias vectors), which are updated
with the gradient descent technique [226]. The training algorithm is sketched below
in Algorithm 5.

Algorithm 5: Pseudocode for the train algorithm of the latent SPNN.

Load train database: zSAE (train partition), ∆t;
Define network architecture: NSPNN

in = d, NSPNN
out = d(d + 3), NSPNN

h , σSPNN
j ;

Define hyperparameters: lSPNN
r , λSPNN

d , λSPNN
r ;

Initialize wSPNN
i,j , bSPNN

j ;
for epoch← 1 : Nepoch do

Initialize loss function: C = 0;
for train_case← 1 : Ntrain do

Encoder: xSAE
t = qϕ(zGT

t ); ▷ Eq. (5.2)
Forward propagation: [L, M, DE, DS]← SPNN(xSAE

t ); ▷ Eq. (2.1)
Time step integration: xSPNN

t+∆t ← xSAE
t + ∆t (LDE+ MDE); ▷ Eq. (5.6)

Update loss function: C ← C + λSPNN
d Ldata + Ldeg; ▷ Eq. (5.7)–(5.8)

end for
MSE loss function: LSPNN ← C

Ntrain
+ λSPNN

r Lreg ▷ Eq. (5.9)–(5.10)
Backward propagation;
Optimizer step;

end for

The testing consists of the full time integration of the initial state vector z0 at t = 0
along the complete simulation time interval I = (0, T], reproducing the problem
statement established in Eq. (3.1). A pseudocode of the testing process of the SPNN
is shown in Algorithm 6.

Algorithm 6: Pseudocode for the test algorithm of the latent SPNN.

Load database: zGT, ∆t;
Load network parameters;
Initialize state vector: zSAE

0 = zSPNN
0 = zGT

0 ;
Initialize encoded state vector: xSAE

0 = xSPNN
0 = qϕ(zGT

0 ); ▷ Eq. (5.1)
for snapshot← 1 : NT do

Forward propagation: [L, M, DE, DS]← SPNN(xSPNN
t ); ▷ Eq. (2.1)

Time step integration: xSPNN
t+∆t ← xSPNN

t + ∆t (LDE+ MDE); ▷ Eq. (5.6)
Update state vector: xSPNN

t ← xSPNN
t+∆t ;

Decoder: zSPNN
t+∆t = pθ(xSPNN

t+∆t ); ▷ Eq. (5.2)
Compute Squared Error: ε2 =

(
zGT

t+∆t − zSPNN
t+∆t

)2; ▷ Eq. (5.12)
end for
Compute MSESPNN (z); ▷ Eq. (5.12)
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5.3.3 EvaluationMetrics
The SAE performance is then evaluated with the mean squared error (MSE) of the
test snapshots for each state variable (z),

MSESAE (z) =
1

Ntest

Ntest∑
n=0

ε2
n =

1
Ntest

Ntest∑
n=0

(
zGT

t − zSAE
t

)2
, (5.11)

tested with two different databases of nonlinear systems. Then, the integration per‑
formance is evaluated with the mean squared error (MSE) of the SPNN state variable
predictions and the ground truth solution for the complete set of snapshots NT,

MSESPNN (z) =
1

NT

NT∑
n=0

ε2
n =

1
NT

NT∑
n=0

(
zGT

t − zSPNN
t

)2
, (5.12)

tested for the same nonlinear systems trained in the SAE training phase.

The SPNN is compared on each example with a baseline unconstrained neural net‑
work which directly predicts the time evolution of the latent vector xt+∆t from the
current snapshot xt, with a similar training and integration scheme as depicted in
Algorithm 5 and Algorithm 6.

5.4 Experiments

5.4.1 Couette Flow of an Oldroyd-B Fluid

Description

The first example is a shear (Couette) flow of an Oldroyd‑B fluid model presented
in Chapter 3, see Fig. 3.7. The state variables chosen for the full order model are
the position of the fluid on each node of the mesh q, its velocity v in the x direction,
internal energy e and the conformation tensor shear component τ for all the nodes
of the mesh,

S = {z = (qi, vi, ei, τi, i = 1, 2, ..., N) ∈ (R×R×R×R)N}, (5.13)

resulting in a full‑order model of D = 4N dimensions.

Database and Hyperparameters

The training database for this Oldroyd‑B model is generated in MATLAB with a mul‑
tiscale approach [139] in dimensionless form. The fluid is discretized in the vertical
direction with N = 100 elements (101 nodes) in a total height of H = 1. A total of
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104 dumbells were considered at each nodal location in the model. The lid velocity
is set to V = 1, the viscolastic Weissenberg number We = 1 and Reynolds number
of Re = 0.1. The simulation time of the movement is T = 1 in time increments of
∆t = 0.0067 (NT = 150 snapshots).

The database consists of the state vector, Eq. (5.13), of the 100 nodal trajectories (ex‑
cluding the node at y = H, for which a no‑slip condition v = 0 has been imposed)
for each snapshot of the simulation. This database is split in 120 train snapshots and
30 test snapshots.

The SAE input and output sizes are NSAE
in = NSAE

out = D = 4N = 400. The number of
hidden layers in both the encoder and decoder is NSAE

h = 2 with 160 neurons each,
ReLU activation functions and linear in the first and last layer. The number of bot‑
tleneck variables is set to Nd = 10. It is initialized according to the Kaiming method
[92], with normal distribution and the optimizer used is Adam [128], with a learn‑
ing rate of lSAE

r = 10−4. The sparsity parameter is set to λSAE
r = 10−4. The training

process (Algorithm 3) is able to sparsify the bottleneck variables of the Oldroyd‑B
model with only d = 4 latent variables, which are the input variables used in the
structure preserving‑neural network.

Thus, the SPNN input and output size are NSPNN
in = d = 4 and NSPNN

out = d(d +

2) = 24. The number of hidden layers is NSPNN
h = 5 with 24 neurons each, ReLU

activation functions and linear in the last layer. The same initialization method and
optimizer are used as in the SAE network, with a learning rate of lSPNN

r = 10−5.
The weight decay and the data weight are set to λSPNN

r = 10−5 and λSPNN
d = 103

respectively.

The unconstrained network training parameters are analogous to the SPNN, except
for the output size NUC

out = NUC
in = 4. Several network architectures were tested, and

the lowest error is achieved with Nh = 5 hidden layers and 25 neurons each layer.

Results

Fig. 5.2 shows the time evolution of the SAE bottleneck variables after the complete
training process. The sparsity constraint forces the unnecessary latent variables to
vanish, remaining a learnt latent dimensionality of d = 4 relevant variables from
a starting bottleneck dimension of Nd = 10 (Fig. 5.2, top left). This compares ad‑
vantageously with the obtained dimensionality d = 6 of our previous work [74].
Table 5.1 shows the mean squared error of the SAE reconstruction, computed with
Algorithm 4, and an equal reduction using Proper Orthogonal Decomposition. Then,
the SPNN is able to integrate the whole trajectory of the relevant latent variables in
the reduced manifold in good agreement with the original SAE reduction (Fig. 5.2,
top right). The integration scheme also ensures that the time derivative of the energy
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(Ė) and entropy (Ṡ) of the system remain equal to zero or greater than zero respec‑
tively, in fulfilment with the first and second laws of thermodynamics, see Fig. 5.2
ottom.
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Figure 5.2: Top left: Time evolution of the latent variables encoded with the SAE in the
Couette flow problem. The bottleneck has Nd = 10 neurons and the learning algorithm
automatically sparsifies them to a dimensionality of d = 4 relevant latent variables. Top
right: Time evolution of the relevant latent variables integrated in time by the SPNN. Bottom:
Evolution of the time derivative of the energy (Ė) and entropy (Ṡ) of the latent variables.

Fig. 5.3 presents the time evolution of the decoded state variables of the Couette
flow for 4 different nodes computed with the presented integration scheme and the
ground truth. The results show a good agreement in the transient response of the
Couette flow, even for the high nonlinearities of the internal energy and the confor‑
mation tensor shear component. The mean squared error of the total integration
scheme, computed with Algorithm 6, for the 4 state variables is reported in Table 5.2
using the SPNN and the unconstrained approach (UC). Our neural network achieves
less error than the unconstrained one, showing the importance of adding the phys‑
ical constraints to the learning process, and this difference becomes greater in the
second example.
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Table 5.1: Mean squared error of the SAE reconstruction (MSESAE) and the same reduction
using a POD algorithm (MSEPOD) for the Couette flow example, only for the test snapshots.

State variable (zi) MSESAE MSEPOD

q [‑] 2.52 · 10−6 7.87 · 10−6

v [‑] 7.27 · 10−5 4.31 · 10−5

e [‑] 1.89 · 10−6 7.33 · 10−6

τ [‑] 7.22 · 10−6 2.07 · 10−5
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Figure 5.3: Results of the complete integration scheme (SPNN) with respect to the ground
truth simulation (GT) for 4 different nodes of the Oldroyd‑B fluid database.

Table 5.2: Mean squared error of the SPNN integration scheme and the unconstrained (UC)
approach for the Couette flow example, reported for the complete trajectory.

State variable (zi) MSESPNN MSEUC

q [‑] 1.78 · 10−5 7.96 · 10−5

v [‑] 3.34 · 10−5 3.48 · 10−5

e [‑] 5.60 · 10−6 5.67 · 10−5

τ [‑] 2.19 · 10−5 1.22 · 10−4
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5.4.2 Rolling Hyperelastic Tire

Description

The second example is a simulation of the transient response of a 175 SR14 rolling
tire (Dtire = 0.66 m) impacting with a curb (hcurb = 0.025 m). The tire is initially
preloaded with an inflation load of 200 kPa, simulating the internal air pressure,
and a footprint load of 3300 N in the vertical axis, simulating the weight of the ve‑
hicle distributed equally in the tires. The free rolling conditions are determined in
a separated analysis, corresponding to ω = 8.98 rad/s for a translational horizontal
velocity of v0 = 10 km/h (see Fig. 5.4).

Figure 5.4: Hyperelastic tire rolling towards a curb. 3D position, 3D velocity and Cauchy
stress tensor components are tracked for the total of 4140 selected nodes.

The tread and sidewalls of the tire are made of rubber, modeled as an incompressible
hyperelastic material with a viscolastic component described by a one‑term Prony
series of the dimensionless shear relaxation modulus,

gR(t) = 1− ḡ1(1− e
−t
τ1 ),

with relaxation coefficient of ḡ1 = 0.3 and relaxation time of τ1 = 0.1 s. The belts and
carcass of the tire are constructed from fiber‑reinforced rubber composites, modeled
as a linear elastic material, with a 20◦ orientation of the reinforcing belt.

The state variables chosen for the full order model are the 3D position qi, velocity vi
and the 6 different components of the Cauchy stress tensor σi for each i node of the
studied mesh subset N,

S = {z = (qi, vi, σi, i = 1, 2, ..., N) ∈ (R3 ×R3 ×R6)N},

resulting in a full‑order model of D = 12N dimensions.

87



Chapter 5. Thermodynamics‑Aware Model Order Reduction

Database and Hyperparameters

The training database for this rolling tire simulation is generated by finite element
simulation. The full‑order model is discretized with 5283 elements in a total of 6962
nodes. The simulation time of the movement is T = 0.5 s in time increments of
∆t = 0.0025 s (NT = 200 snapshots). The database consists of the normalized state
vector of a subset of N = 4140 relevant nodes in every time step snapshot. The
total state vector snapshots are randomly split in 160 train snapshots and 40 test
snapshots.

The SAE architecture for this second example is slightly modified in order to handle
the high dimensionality of the problem. The three physical variables (q, v, and σ) are
encoded and decoded independently, due to their very different nature. In this way,
three bottleneck latent vectors are obtained. The input and output sizes of the three
SAEs are NSAE

in,q = NSAE
out,q = 3N = 12420 for the position variable, NSAE

in,v = NSAE
out,v =

3N = 12420 and NSAE
in,σ = NSAE

out,σ = 6N = 24840 for the stress tensor.

The number of hidden layers in both the encoder and decoder is NSAE
h = 2 in the

three variables with 40 neurons each in position and velocity, and 80 neurons in the
stress tensor, with ReLU activation functions and linear in the first and last layers.
The number of bottleneck variables is set to Nd,q = 10 for the position, Nd,v = 10
for velocity and Nd,σ = 20 for the stress tensor. Thus, the total dimensionality of the
bottleneck latent vector is Nd = Nd,q + Nd,v + Nd,σ = 40.

In the same way as we do in the first example, the nets are initialized according to
the Kaiming method [92], with normal distribution and the optimizer used is Adam
[128], with a learning rate of lSAE

r = 10−4. The sparsity parameter, in this case, is set
to λSAE

r = 10−2. The training process (Algorithm 3) is able to sparsify the bottleneck
variables of the rolling tire model with only dq = 4 position, dq = 3 velocity and
dσ = 2 stress tensor latent variables. So, the learnt dimensionality of the reduced
model is d = dq + dv + dσ = 9, which are the input variables used in the structure
preserving‑neural network.

Thus, the SPNN input and output sizes are NSPNN
in = d = 9 and NSPNN

out = d(d+ 2) =
99. The number of hidden layers is NSPNN

h = 5 with 198 neurons each, with ReLU
activation functions and linear in the last layer. The same initialization method and
optimizer are used as in the SAE network, with a learning rate of lSPNN

r = 10−5.
The weight decay and the data weight are set to λSPNN

r = 10−4 and λSPNN
d = 103

respectively.

The unconstrained network training parameters are analogous to the SPNN, except
for the output size NUC

out = NUC
in = 9. Several network architectures were tested,

and the lowest error i was achieved with Nh = 5 hidden layers and 45 neurons each
layer.
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Results

Fig. 5.5 shows the time evolution of the SAE bottleneck variables (xq, xv and xσ) af‑
ter the complete training process. The sparsity constraint forces the unnecessary
latent variables to vanish, remaining a learnt latent dimensionality of dq = 4, dv = 3
and dσ = 2 relevant variables from a starting bottleneck dimension of Nd,q = 10,
Nd,v = 10 and Nd,σ = 20 respectively (Fig. 5.5). The mean squared error of the SAE
reconstruction, computed with Algorithm 4, and a equal reduction with a Proper
Orthogonal Decomposition is shown in Table 5.3. Then, the SPNN is able to inte‑
grate the whole trajectory of the relevant latent variables in the reduced manifold in
good agreement with the original SAE reduction, see Fig. 5.5 middle right. Also, the
integration scheme fulfils the first and second laws of thermodynamics, see Fig. 5.5
bottom.

Table 5.3: Left: Mean squared error of the SAE reconstruction (MSESAE) for the 12 state vari‑
ables of the rolling tire example, reported only for the test snapshots. Right: Mean squared
error of the same reduction using a Proper Orthogonal Decomposition algorithm (MSEPOD).

State variable (zi) MSESAE MSEPOD

q1 [m] 2.37 · 10−5 1.30 · 10−3

q2 [m] 3.69 · 10−7 6.27 · 10−7

q3 [m] 3.06 · 10−5 6.55 · 10−5

v1 [m/s] 1.00 · 10−3 3.32 · 10−2

v2 [m/s] 4.54 · 10−5 2.37 · 10−2

v3 [m/s] 3.70 · 10−3 6.91 · 10−2

σ11 [MPa] 2.41 · 10−4 3.74 · 10−4

σ22 [MPa] 2.10 · 10−4 4.34 · 10−4

σ33 [MPa] 3.35 · 10−4 6.40 · 10−4

σ12 [MPa] 6.73 · 10−5 1.17 · 10−4

σ13 [MPa] 1.80 · 10−4 3.24 · 10−4

σ23 [MPa] 2.95 · 10−5 5.86 · 10−5

Fig. 5.6 presents the time evolution of the decoded state variables q3, v3, σ33 and σ23

of the rolling hyperelastic tire for 4 different nodes computed with the presented
integration scheme and the ground truth. The mean squared error of the total inte‑
gration scheme, computed with Algorithm 6, for the 12 state variables is reported
in Table 5.4 using the SPNN and the unconstrained approach (UC). In this example,
the error achieved by our method is several orders of magnitude less than the naive
approach.
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Figure 5.5: Top and middle left: Time evolution of the latent variables encoded with the
sparse autoencoder (SAE) in the hyperelastic rolling tire problem. The bottleneck has Nd =
40 neurons and the learning algorithm sparsifies them to a dimensionality of d = 9 relevant
latent variables. Middle right: Time evolution of the relevant latent variables integrated
in time by the structure‑preserving neural network (SPNN). Bottom: Evolution of the time
derivative of the energy (Ė) and entropy (Ṡ) of the latent variables.
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Figure 5.6: Results of the complete integration scheme (SPNN) with respect to the ground
truth simulation (GT) for 4 different nodes and 4 different variables (q3, v3, σ33 and σ23) of
the hyperelastic rolling tire database.

Table 5.4: Mean squared error of the SPNN integration scheme and the unconstrained (UC)
approach for the 12 state variables of the rolling tire example, reported for the complete
trajectory.

State variable (zi) MSESPNN MSEUC

q1 [m] 2.07 · 10−4 2.76 · 10−1

q2 [m] 8.09 · 10−7 1.57 · 10−5

q3 [m] 6.25 · 10−5 5.75 · 10−2

v1 [m/s] 7.95 · 10−3 4.26
v2 [m/s] 3.79 · 10−5 7.00 · 10−4

v3 [m/s] 1.78 · 10−2 4.39
σ11 [MPa] 2.04 · 10−4 4.71 · 10−3

σ22 [MPa] 1.76 · 10−4 4.07 · 10−3

σ33 [MPa] 2.70 · 10−4 5.35 · 10−3

σ12 [MPa] 6.05 · 10−5 1.50 · 10−3

σ13 [MPa] 1.48 · 10−4 3.03 · 10−3

σ23 [MPa] 2.73 · 10−5 6.67 · 10−4
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5.5 Conclusions
In this work, we develop a technique to learn the latent dimensionality of a physical
system from data and obtain a thermodynamics‑aware time integrator, which guar‑
antees the fulfillment of the laws of thermodynamics. This technique is applied to
two different physical systems. The Couette flow in a viscoelastic fluid is reduced
from D = 400 dimensions to d = 4 dimensions, whereas the rolling tire is reduced
from D = 49680 dimensions to d = 9 dimensions. The physically informed inte‑
grator is then able to predict the full time evolution of the set of state variables with
similar precision reported in previous work [97, 72].

If compared to previous works of the authors in the field, the use of autoencoders to
unveil the dimensionality of the embedding manifold clearly outperforms the results
obtained by classical (linear) model order reduction techniques, specially in highly
nonlinear state variables such as the rolling tire velocity. In addition, it is worth high‑
lighting the fact that the method is able to detect the true dimensionality of the data,
with no need to call to different codes rely on additional methods, such as k‑PCA or
TDA (Topological Data Analysis), for instance for this purpose. The right thermody‑
namic setting also ensures the consistency and stability of the full‑order dynamics,
after projecting back the reduced‑order results to the physical space, achieving better
results than an unconstrained approach with no physical restrictions.

This method has similar disadvantages as the discussed model order reduction tech‑
niques. The input of the reduction phase has fixed dimensions meaning that is only
valid for the original meshed domain. Another limitation is the autoencoder over‑
smoothing of high frequency features in the full‑order dynamics, which is a well
known problem in neural networks called spectral bias [213]. There are several ideas
to overcome these limitation in Chapter 8.
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Part IV

Applications to Complex Systems





Port-Metriplectic
Neural Networks 6

In this chapter, we develop inductive biases for the machine learning of complex
physical systems based on the port‑Hamiltonian formalism. To satisfy by construc‑
tion the principles of thermodynamics in the learned physics, conservation of energy
and non‑negative entropy production, we modify accordingly the port‑Hamiltonian
formalism so as to achieve a port‑metriplectic one. We show that the constructed net‑
works are able to learn the physics of complex systems by parts, thus alleviating the
burden associated to the experimental characterization and posterior learning pro‑
cesses of this kind of systems. Predictions can be done, however, at the scale of the
complete system. Examples are shown on the performance of the proposed tech‑
nique. The content of this chapter is included in the following publication [96]:

Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Port‑metriplectic neural networks: thermodynamics‑informed machine learning

of complex physical systems
Computational Mechanics, 72, 553–561 (2023)

6.1 Introduction
As we have already seen in previous chapters, the possibility of developing learned
simulators has attracted an important research activity in the computational mechan‑
ics community and beyond. By learned simulators we mean methodologies able to
learn from data the dynamics of a physical system so as to perform accurate pre‑
dictions about previously unseen situations without the burden associated to the
construction of numerical models. Among their advantages we can cite that they
are based on reusable architectures, can be optimized to work under really stringent
real‑time feedback rates, and are specially well suited for optimization and inverse
problems.
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However, in real engineering applications, physical systems are usually composed of
smaller subsystems interacting with each other. There is a vast number of examples
in which this is the case: similar components assembled into bigger mechanisms,
fluid‑structure interaction, multiphysics simulations, etc. Thus, it is interesting not
only to study isolated closed systems, but also opened systems which might interact
with their surroundings. In this case, the use of model order reduction might be
difficult to achive, as the system might have very different complex geometries and
governing equations so finding the reduction and inverse mapping is cumbersome.

In this chapter we develop a novel strategy based on the port‑Hamiltonian formal‑
ism used to model open conservative systems [256, 15, 217], which we extend so as
to comply with the first and second principles of thermodynamics by construction.
Based on this new formalism, which we call port‑metriplectic, we construct a deep
neural network methodology to learn the physics of complex systems from data. The
resulting port‑metriplectic networks will comply by construction with the principles
of thermodynamics—that can be enforced through hard or soft constraints—while
they allow to analyse complex systems by parts. These parts will then communicate
through energy ports to construct the final complex system.

6.2 Methodology
As presented in Section 2.3, many works have used the Hamiltonian principles of
reversible dynamics as an inductive bias to learn conservative systems. We have
justified that relevant real world phenomena include dissipative effects which do
not guarantee energy conservation.

This thesis solves that problem by using a metriplectic model which accounts for
both reversible and irreversible dynamics by including a second dissipative potential
function, considering the whole as a closed system. However, the same problem
can be seen as a conservative Hamiltonian system perturbed with an external force
contribution, i.e. an open system interacting with its surroundings. This is the idea
of port‑Hamiltonian models, mainly developed in the control theory field.

6.2.1 Port-Hamiltonian Neural Networks
For dissipative systems, the easiest form of the evolution Eq. (3.1) could be, perhaps,
a gradient flow [104]. Their evolution can be established after some (dissipation) po‑
tentialR in the form [49]

ż = −∂R
∂z

.

Recently, the so‑called Symplectic ODE nets (symODEN) [286, 285], have tackled the
issue of introducing dissipation in the learned description of the physics. It is also
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the approach followed in [82]. More recently, two distinct works have tackled the
dissipation problem by relaxing equivariance in the networks [89, 265].

These works seem to be closely related to the vast corps of literature on the port‑
Hamiltonian approach to dynamical systems [256, 217, 15]. Port‑Hamiltonian sys‑
tems assume an evolution of the system in the form[

q̇
ṗ

]
=

([
0 I
−I 0

]
− D(q)

)[
∂H
∂q
∂H
∂p

]
+

[
0

g(q)

]
u, (6.1)

where (q, p) are the generalized position and momenta, dissipation is included by
adding a symmetric and positive semi‑definite matrix D, and control is considered
through an actuation term u and a non‑linear function of the position g(q). Eq. (6.1)
reduces to the Hamiltonian description if no dissipation nor control are considered.
Here, we have assumed a canonical form for the Hamiltonian, i.e., that it depends
on a set of variables z = {q, p}. More general forms can be expressed similarly.

The true advantage of using port‑Hamiltonian formalisms as inductive biases in the
learning procedure stems from the fact that, on one side, they allow the introduction
of dissipation and control and, on the other, they model open systems (as opposed
to classical Hamiltonian descriptions where energy conservation assumes inherently
that the system is closed) [50].

Therefore, the use of port‑Hamiltonian formalisms as inductive biases in learning
processes is extremely interesting. However, classical port‑Hamiltonian schemes do
not guarantee a priori to comply with the laws of thermodynamics, see [42]. Since
entropy is not explicitly defined in the classical port‑Hamiltonian formulation, it is
difficult to impose the fulfillment of the second principle of thermodynamics. There‑
fore, we suggest to extend the GENERIC formalism to open systems so as to develop
alternative port‑metriplectic biases.

6.2.2 Port-Metriplectic Neural Networks
Very few works exist, to the best of our knowledge, on the development of GENERIC
formulations for open systems, that may lead to the development of port‑metriplectic
formulations. Maybe the only exception is [198], later on revisited by [11, 19], both
published in conference proceedings and, of course, with no machine learning ap‑
proximations. Both approaches are essentially identical, and start from the bracket
formulation of GENERIC in Eq. (2.9). For open systems, these brackets take the form

{·, ·} = {·, ·}bulk + {·, ·}boun,

and
[·, ·] = [·, ·]bulk + [·, ·]boun.
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In other words, both brackets are decomposed additively into bulk and boundary
contributions. With this decomposition in mind, the GENERIC principle now reads

ż = {z, E}bulk + [z, S]bulk = {z, E}+ [z, S]− {z, E}boun − [z, S]boun. (6.2)

The degeneracy conditions and must be satisfied by the bulk operators only, since it
is possible, in general, that there may be a reversible flux of entropy at the boundary
or, equivalently, an irreversible flux of energy at the boundary [198],

Lbulk(z)
∂Sbulk

∂z
= 0,

and
Mbulk(z)

∂Ebulk
∂z

= 0,

The particular form of the boundary terms in Eq. (6.2) depends, of course, of the
particular phenomenon under scrutiny, but in a general way it can be expressed
using L and M operators as

ż = L
∂E
∂z

+ M
∂S
∂z
− Lboun

∂Eboun
∂z

−Mboun
∂Sboun

∂z
. (6.3)

More particular expressions can be developed if we know in advance some prop‑
erties of the system at hand. For instance, in the first numerical experiment we
deal with a double pendulum by learning the behaviour of each pendulum sepa‑
rately. If we know in advance that the only boundary term comes from the energy‑
entropy pair transmitted by the other pendulum, and no other external contribution
is present, more detailed assumptions in the form of degeneracy conditions can be
assumed. This may lead to a decrease in learning time or the employ of less data.

Fig. 6.1 sketches the approach developed herein for complex systems. In the next
section we explore the particular form that these terms could acquire for both finite
and infinite dimensional problems.

We propose two learning procedures which correspond to different level of informa‑
tion available of the dynamics of the system. In the first example, we focus on two
coupled subsystems in which we learn the self and boundary contributions of both
subsystems to the global dynamics of the problem. This is the case when the interest
is focused on the complete system divided into smaller subsystems. In the second
example, we suppose that the external influence is determined by a load vector as a
result of an unknown external interaction with another subsystem. Thus, the learn‑
ing procedure is focused on the self and boundary contributions of only one subsys‑
tem based on an external interaction. This case is convenient for applications where
only partial information of the system is available.
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Subsystem 1

Subsystem 2 Subsystem 3

Complex system

Subsystem 1

Subsystem 2 Subsystem 3

Figure 6.1: Complex system created as a connected group of subsystems Ωi. The dynamics
of any subsystem is described using a GENERIC formulation including conservative and
dissipative terms, taking also into account the external contributions in the boundary terms
Γi. Subsystems communicate between each other through ports by the exchange of energy
and entropy.

6.3 Experiments

6.3.1 Double Thermoelastic Pendulum

Description

The first example is the double thermoelastic pendulum already presented in Sec‑
tion 3.4.1, see Fig. 3.2. The set of variables describing each individual pendulum are
here chosen to be

S = {z = (q, p, s) ∈ (R2 ×R2 ×R)}.

where q, p and s are the position, linear momentum and entropy of the pendulum
mass. The evolution of the state variables of the second pendulum is defined as

ż2 = L2
∂E2

∂z2
+ M2

∂S2

∂z2
−Mboun,2

∂Sboun,2

∂z2
,

where the first two positive terms describe the self contribution of the simple pendu‑
lum (conservative and dissipative effects) and the third term describes the dissipa‑
tive effect produced by the first pendulum affecting over the second pendulum.

On the other hand, the evolution of the state variables of the first pendulum is defined
as

ż1 = L1
∂E1

∂z1
+ M1

∂S1

∂z1
− Lboun,1

∂Eboun,1

∂z1
−Mboun,1

∂Sboun,1

∂z1
, (6.4)

where in this case the first two positive terms describe the self contribution of the
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first simple pendulum (conservative and dissipative effects) and the third and fourth
terms describe the external contribution on the conservative and dissipative parts,
both produced by the influence of the second pendulum over the first pendulum.

Note that the first pendulum has no conservative contribution to the second pendu‑
lum, i.e., the term

Lboun,2
∂Eboun,2

∂z2
,

does not exist. However, there is a conservative contribution from the second pen‑
dulum on the first pendulum, see [222].

It is worth noting, as previously pointed out in [50], that the fact that every term in
Eq. (6.4) depends on the state variables z1 makes the learning procedure more intri‑
cate, caused by its non‑separable structure. This problem is not present if the port
terms depend only on time, as it is the case in the next experiment. To overcome this
limitation, we employ a structure‑preserving neural network for each of the terms
in Eq. (6.4). These networks share the weights, however, for both pendula, if they
are known in advance to be identical.

The fact of using individual approximations of the dynamics of each subsystem (each
pendulum) allows to use artificial neural networks of considerably smaller size with
respect to an analysis of the whole problem using a larger number of variables to
describe the global state as in Chapter 3.

Database and Hyperparameters

The database consists of 50 different simulations with random initial conditions of
position q and linear momentum p of both masses m1 and m2 around a mean position
and linear momentum of q1 = [4.5, 4.5]m, p1 = [2, 4.5] kg·m/s, and q2 = [−0.5, 1.5]
m, p2 = [1.4, −0.2] kg·m/s respectively. The masses of the double pendulum are
set to m1 = 1 kg and m2 = 2 kg, joint with springs of a natural length of λ0

1 = 2 m
and λ0

2 = 1 m and thermal constant of C1 = 0.02 J and C2 = 0.2 J and conductivity
constant of κ = 0.5. Note that the double pendulum constitutes a closed system as a
whole, but this is not the case for each one of the simple pendula. Both start from a
temperature of 300K. The simulation time of the movement is T = 60 s in NT = 200
time increments of ∆t = 0.3 s.

Results

The boxplot in Fig. 6.2 shows the statistics of the L2 relative error of the rollout train
and test simulations.
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Figure 6.2: Box plots of the relative L2 error of the double pendulum. The state variables
represented are position (q), momentum (p), and entropy (s).

6.3.2 Interacting Beams

Description

In this example we consider two viscoeleastic beams that can interact through con‑
tact between them, see Fig. 4.3, and whose physics are to be learned. Each individual
viscoelastic beam is defined with the same geometry and material parameters as in
Section 4.3.2. We assume that the necessary state variables for for a proper descrip‑
tion of the beams are the position q, its velocity v and the stress tensor σ,

S = {z = (q, v, σ) ∈ R3 ×R3 ×R6},

at each node of the discretization of the beams. Since both beams are identical, we
characterize only one of them and develop a port‑metriplectic learned simulator for
the joint system.

Figure 6.3: Interacting beams example. One single beam problem is analysed from simula‑
tion data. The resulting system is composed of two of these beams interacting together.

We use a thermodynamics‑informed graph neural network developed in Chapter 4
to learn the self contribution of the dynamics, i.e. the first two terms of Eq. (6.3). The
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boundary terms are learned using a standard structure‑preserving neural network
[97] with the additional input of the external forces applied to the beam.

Database and Hyperparameters

The dimensions of the beams are H = 10, W = 10 and L = 40. The finite element
mesh from which data are obtained consisted of Ne = 500 hexahedral linear brick
elements and N = 756 nodes. The constitutive parameters are C10 = 1.5 · 105, C01 =

5 · 103, D1 = 10−7 and ḡ1 = 0.3, ḡ2 = 0.49, τ1 = 0.2, τ2 = 0.5 respectively. A
distributed load of F = 105 is applied in 52 different positions with an orientation
perpendicular to the solid surface. Simulations were quasi‑static and included NT =

20 time increments of ∆t = 5 · 10−2 s. Two identical beams are assembled in 90◦ with
a gap of g = 10, as depicted in Fig. 4.3.

Results

The results are presented in Fig. 6.4. The error magnitude is similar as the reported
in Chapter 4 in addition to the consistent formulation of port‑metriplectic dynamics.
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Figure 6.4: Box plots of the relative L2 error of the interacting beams example. The state
variables represented are position (q), velocity (v), and stress tensor (σ).

6.4 Conclusions
In this chapter we have made two main contributions. On one side, the development
of port‑Hamiltonian‑like approximations for dissipative open systems that commu‑
nicate with other systems by exchanging energy and entropy through ports in their
boundaries. This formulation extends the classical port‑Hamiltonian approaches
while guaranteeing the fulfillment of the laws of thermodynamics (conservation of
energy in the bulk system, non‑negative entropy production). The resulting formu‑
lation, which we refer to as port‑metriplectic, presents a rigorous thermodynamic
description of the dissipative behaviour of the system.
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On the other hand, the just developed formulation is employed as an inductive bias
for the machine learning of the physics of complex systems from measured data.
This bias is developed as a soft constraint in the loss term, although it can also be
imposed straightforwardly as a hard constraint.

The resulting neural networks, for which we have formulated two distinct versions,
one based on standard multilayer perceptrons, and a second one based on graph
neural networks, have shown an excellent performance. Error bars are equivalent to
those obtained in previous works of the authors, by employing a closed‑system ap‑
proach to the same physics. The new approach opens the door to the development of
learned simulators for complex systems through piece‑wise learning of the physical
behaviour of each of its components. The final, global simulator is then obtained by
assembling each piece through their ports.
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Real-time Deep Simulators for
Augmented Reality 7

The imminent impact of immersive technologies in society urges for active research
in real‑time and interactive physics simulation for virtual worlds to be realistic. In
this context, realistic means to be compliant to the laws of physics. In this chapter
we present a method for computing the dynamic response of (possibly non‑linear
and dissipative) deformable objects induced by real‑time user interactions in mixed
reality using deep learning. The graph‑based architecture of the method ensures the
thermodynamic consistency of the predictions, whereas the visualization pipeline
allows a natural and realistic user experience. Two examples of virtual solids in‑
teracting with virtual or physical solids in mixed reality scenarios are provided to
prove the performance of the method. The content of this chapter is included in the
following publication [99]:

Q. Hernández, A. Badías, F. Chinesta, & E. Cueto
Thermodynamics‑informed neural networks for physically realistic mixed reality

Computer Methods in Applied Mechanics and Engineering, 407, 115912 (2023)

7.1 Introduction
Computer science advances in the last decades led us to experience in a relatively
short lapse of time three major technological innovations: the personal computer, the
Internet, and mobile devices. Currently, we are at the beginning of a fourth paradigm
of computing innovations involving immersive technologies such as Virtual Reality
(VR), Augmented Reality (AR) or Mixed Reality (MR). All this is possible due to huge
advances in machine learning techniques and hardware improvements applied to
computer graphics and computer vision.

It is clear that this new paradigm seeks to revolutionize technology in the next years
and will have a great impact in society such as smart cities [3, 258], new teaching
methods [224] or economic paradigms [261]. Technology companies have already
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created numerous digital platforms, such as the Metaverse [190, 136] or the Omni‑
verse [111, 148], in order to develop their own immersive technologies.

In most of the cases, virtual worlds are required to resemble our real world as much
as possible, so many disciplines come into play (traditionally, computer graphics
and computer vision). However, virtual worlds need to be dynamic rather than
static so the user can responsively interact with a changing virtual world. From that
perspective, physics simulation plays a major role and it is required to be real‑time.
On the one hand, current real‑time physic engines rely on severe simplifications of
the governing dynamical equations and are limited to very simple material models
and constitutive phenomena. On the other hand, classical engineering methods for
solid and fluid simulations, such as the finite element or finite differences methods,
have the consistency of decades of theoretical research in terms of the convergence to
a consistent physical solution but are too expensive to achieve real‑time framerates.
However, these last methods can be used to generate a rich and consistent database
to train a fast AI accelerated by the recent advances in machine learning procedures.

Real‑time physics engines such as PhysX [167, 46] or Havok [264] have mostly been
developed in the videogame industry. Even if those engines allow to program cus‑
tom dynamical models, they usually rely on simplified mass‑spring models or rigid
body dynamics to achieve high framerates in modern videogames. Multiple re‑
search lines remain open trying to leverage the physical consistency of the results
with low computational requirements.

Several authors solved the mentioned problems by creating a reduced order model
of the system [62, 30], as already discussed in Chapter 5. However they all have
similar disadvantages: as the solution is already precomputed, they are unable to
handle different mesh discretizations and fail to generalize to unseen configurations.
Other approaches are based on standard multilayer perceptrons, used as a colloca‑
tion method for residual minimization [61, 196] or specific formulations for contact
mechanics [223, 219]. However, these are engineered ad hoc for special dynamical
systems and also require the prior knowledge of the governing equations.

In this work, we aim to merge the physical consistency of classical simulation tech‑
niques with the speed of real‑time physics engines using a deep learning approach
to develop a real‑time interactive simulator. Although the formulation is general for
a wide variety of dynamical systems, we focus on nonlinear solid mechanics. The
results are consistent with the laws of thermodynamics by construction and are able
to achieve real‑time performance in general load cases which were not previously
seen by the network.
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7.2 Problem Statement
The present chapter focuses on the deformation of virtual solid objects. Thus, we use
the dynamical equilibrium equation of non‑linear solid mechanics which balances
the external and internal body forces with the acceleration of the solid. This is,

∇ · P + B = ρü in Ω0, (7.1)

where B represents the volumetric force applied to the body and P the first Piola‑
Kirchhoff stress tensor. Ω0 = Ω(t = 0) represents the undeformed configuration of
the virtual solid. The solution is subjected to appropriate boundary conditions

u(X) = u on Γu,

PN = t on Γt,

with Γu and Γt representing the essential (Dirichlet) and natural (Neumann) por‑
tions of the boundary Γ = ∂Ω of the solid. X is the undeformed position, N is the
unit vector normal to Γ = ∂Ω0 and ū, t̄ are the applied displacement and traction
respectively. To complete the problem, some relationship between kinematic vari‑
ables (displacements, strain) and dynamic variables (stresses) must be assumed. The
constitutive equation is here chosen to be hyperelastic, with a strain energy function
per unit volume Ψ defined such that

S =
∂Ψ
∂E

,

where S is the second Piola‑Kirchhoff and E is the Green‑Lagrange strain tensor.
Viscoelastic effects are also considered using variable shear relaxation modulus via
Prony series. The objective of the method is to solve Eq. (7.1) in a real‑time interactive
interface with a physics‑based neural network trained with high fidelity solutions.

7.3 Methodology

7.3.1 IntegrationMethod
We use the graph‑based integration scheme from Chapter 4 adapted to the aug‑
mented reality setup. Its objective is to learn not the outcome of a given simula‑
tion under different conditions such as forces or boundary conditions, but the actual
physics taking place, such that the learned simulator is not sensitive to changes in the
mesh, for instance. A scheme of the algorithm is presented in Fig. 7.1.

We assume our virtual solids to be viscous‑hyperelastic, so that the state variables
for the proper description of their evolution in terms of the GENERIC formalism are
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Physical system

...

Graph neural networkInduced graph Step prediction

Figure 7.1: Thermodynamics‑informed graph neural network architecture. The system is
described as a set of state variables zi, global simulation parameters g and external boundary
conditions f i. A graph G is constructed from the information of the physical system, defining
vertex features vi, edge features eij and global features g. The graph features are processed
with a message‑passing graph neural network. The step prediction is performed using the
GENERIC integration scheme, which is repeated iteratively to get the complete rollout of the
simulation.

the position q, velocity v and the stress tensor σ,

S = {z = (q, v, σ) ∈ R3 ×R3 ×R6}.

The edge feature vector contains the relative deformed position between nodes, to
give a distance‑based attentional flavour to the graph processing blocks and trans‑
lational invariance. The velocity and stress tensor components are part of the node
feature vector, concatenated to a two‑dimensional one‑hot vector n which represent
the encastre and solid nodes respectively. The external load vector f i is included
in the node processor MLP as an external interaction. No global feature vector is
needed in this case, resulting in the following feature vectors:

eij = (qi − qj, ‖qij‖2), vi = (v, σ, n).

Thus, the dimensions of the feature vectors are Fe = 4, Fv = 11, Ff = 3 and Fg = 0.

7.3.2 Vision System
For an augmented or mixed reality application, we need to include virtual objects in
a real scene. For that, it is necessary to have a sensor able to get information about
the physical environment and a screen device to plot the resulting image. In the
present work, we use a ZED Mini stereo vision system from Stereolabs, which is
able to retrieve both a depth and RGB image of the captured snapshot. We plot the
resulting real‑time video stream in a computer screen, but could be extended to a
VR headset or AR glasses.

As the laws of motion are independent with respect to any frame of reference (ob‑
jectivity), we use the model space to compute the dynamical state variables of the
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Clip space

Model space

View space

World space

Figure 7.2: Model‑view‑projection transformation between the model and the clip coordi‑
nates. The dynamics and interactions are computed in the model space as 3D coordinates,
whereas the visualization pipeline requires a 2D clipping coordinates in a fixed range be‑
tween ‑1 and 1.

system. However, the visualization pipeline requires the coordinates to be in a nor‑
malized range of C = [−1, 1] × [−1, 1] called the clip space. The transformation
between the 3D model space and the 2D clip space is achieved by the definition of
the Model‑View‑Projection matrix (see Fig. 7.2). From now, the point coordinates are
supposed to be in homogeneous coordinates.

• Model: The dynamics are computed in a local frame of reference called the
model spaceM. The position, orientation and scale of the model can be de‑
fined as a set of transformation matrices Tm, Rm and sm respectively with re‑
spect to the world spaceW , considered to be the usual Euclidean space R3.

xworld = Mmxmodel = TmRmsmxmodel.

• View: In a similar fashion, the viewing camera also has a model matrix defin‑
ing its position in the world space, which is commonly designed as the extrinsic
parameters Pv of the camera pose. This information can be obtained using a
monocular pose estimator or triangulating with a stereo vision system. Thus,
the camera or view space V can be determined by a set of transformations from
the world space using the camera extrinsic parameters given by a rotation Rv

and translation Tv matrices.

xview = Mvxworld = Pv
−1xworld = (TvRv)

−1xworld.

• Projection: The last transformation is in charge of projecting the 3D coordi‑
nates into the 2D clip space C. First, in order to get a realistic visualization, we
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use a perspective projection Mp based on the camera viewing frustrum

Mp =


cot α

2 0 0 0
0 cot α

2 0 0
0 0 − zfar+znear

zfar−znear
− 2zfarznear

zfar−znear

0 0 −1 0

 ,

where α is the field of view of the camera and znear and zfar are the minimum
and maximum distances of the clipping plane. This creates a normalized 3D
viewing box of the camera, which is then projected in the 2D clip space by the
vertex shader. Thus, the final coordinates can be computed using the following
equation:

xclip = Mpxview = MpMvMmxmodel. (7.2)

By defining the Model‑View‑Projection matrix as MpMvMm we can compute the clip
coordinates directly from the model coordinates computed by the thermodynamics‑
informed neural network.

7.3.3 Visualization System
The visualization of the resulting image is performed using OpenGL and the GLU li‑
brary. This pipeline requires the definition of two spatial functions, run sequentially
on the GPU, called the vertex and fragment shaders. The vertex shader defines the
vertex position of the entities to display whereas the fragment (or texture) shader
define the RGBA colors for each rasterized pixel.

Each vertex position is computed using Eq. (7.2) from the deformed configuration
coordinates and the polygons are drawn based on the connectivity matrix of each
solid. The color of each vertex is computed directly from the neural network predic‑
tion using a fixed colormap. Additionally, a basic lighting model was added to the
fragment shader to increase the realism of the virtual objects using the Phong shading.
This model computes each RGB pixel intensity as

I = kaia + kd(l · n)id + ks(r · v)βis,

where ka, kd and ks are the ambient, diffuse and specular reflection constants, β is the
shininess constant of the material and ia, id and is are the RGB color intensities of the
ambient, diffuse and specular components. The illumination varies depending on
the geometry of the scene and camera position, where n is the surface normal vector,
l and r are the directions of the light source and its perfect reflection, v is the viewing
direction and “·” is the dot product.

We have also implemented a depth or z‑buffer in the fragment shader which com‑
pares on each pixel the depth of virtual and real objects on the scene and renders
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only the closest to the camera. This accounts for every occlusion that the vision sys‑
tem may encounter. The depth of the scene seen by the camera is computed directly
using the stereo vision system.

7.3.4 Collision and Contact
We use a high‑fidelity hand tracker from MediaPipe [278] which provides an accu‑
rate localization of the finger tips. By using the inverse transformation of Eq. (7.2),
we can compute the 3D coordinates of the finger tips in the model space and com‑
pute the distance to each node of the virtual object. When this distance is less than a
small threshold, collision is detected and a prescribed force is applied to the model.
A similar procedure is applied to the collision of several virtual objects.

The code is implemented in Python using the PyOpenGL wrapper for the visual‑
ization and Pytorch Geometric [58] for the deep learning training and evaluation.
The videos are generated using a standard desktop computer with a single Nvidia
RTX2070 GPU.

7.4 Experiments

7.4.1 Bending Beams

Description

The first system is composed of two interacting viscoelastic beams as described in
Chapter 6. Both identical beams are assembled with a small gap between each other,
allowing for a contact interaction, as depicted in Fig. 6.3.

Database and Hyperparameters

The dimensions of the beams are H = 10, W = 10 and L = 40. The finite element
mesh from which data are obtained consists of Ne = 500 hexahedral linear brick
elements and N = 756 nodes. The constitutive parameters of the hyperelastic strain
energy potential are C10 = 1.5 · 105, C01 = 5 · 103, D1 = 10−7 and ḡ1 = 0.3, ḡ2 = 0.49,
τ1 = 0.2, τ2 = 0.5 respectively for the two‑term Prony series. A distributed load of
F = 105 is applied in 52 different positions with a perpendicular direction to the solid
surface. Each simulation is composed of NT = 20 time increments of ∆t = 5 · 10−2 s.
Both beams are assembled in 90◦ with a gap of g = 10.

The graph neural network vertex and edge MLPs have two layers of Fh = 100 neu‑
rons each, with 10 message passing sequential blocks. The training was performed
for Nepoch = 1800 epochs and learning rate lr = 10−4.
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Results

Fig. 7.3 shows a real‑time video sequence generated using the presented algorithm.
The interaction of both the real objects (finger tips) and the virtual objects are simu‑
lated smoothly at more than 30 frames per second. It is important to highlight that
during a video sequence the trained neural network is able to generalize to previ‑
ously unseen configurations. The quantitative errors by the neural network in the
real‑time rollout predictions are shown in Fig. 7.6a, which remain below 1% in posi‑
tion and velocity and 10% in the stress tensor field.

Figure 7.3: Frames extracted from the interacting beams sequence. Color encodes the x‑
x stress field component associated with the displacement imposed by contact with a real
object.

The computational cost of the high fidelity FEM simulations used for the training
of the neural network is 15 s per simulation, up to 795 s for the whole dataset, and
243 Mb in memory storage. Conversely, the training time of the neural network is
4.5 h and the mean evaluation time is 9 ms per snapshot with a memory storage of
12.3 Mb. Thus, the use of a deep learning approach allows a drastic reduction of
the online computation time with the inconvenient of larger offline training time. It
is also worth noting that the network parameters are more than 10 times lighter in
terms of memory storage.
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7.4.2 Stanford Bunny

Description

The second example is a bunny mesh from the Stanford 3D scanning repository,
which is a more complex geometry as the one shown in the previous example. It
is a standard reference model in computer graphics research. The model is repre‑
sented in Fig. 7.4.

Figure 7.4: Bunny mesh geometry with boundary conditions. A concentrated force is applied
to random nodes and the bottom of the mesh is encastred.

Database and Hyperparameters

The finite element mesh from which data are obtained consisted of Ne = 4941 tetra‑
hedral linear elements and N = 1352 nodes. The constitutive parameters of the hy‑
perelastic strain energy potential are C10 = 2.6 · 10−1 and D1 = 4.9 · 10−2. Similarly
as the previous case, a concentrated load of F = 1 is applied in 100 different posi‑
tions with a perpendicular direction to the solid surface. The body is fixed to the
ground plane by disabling displacements and rotations at the lower model nodes.
Each simulation is composed of NT = 20 time increments of ∆t = 5 · 10−2 s.

The graph neural network vertex and edge MLPs have two layers of Fh = 100 neu‑
rons each, with 10 message passing sequential blocks. The training was performed
for Nepoch = 1800 epochs and learning rate lr = 10−4.

Results

Fig. 7.5 shows a real‑time video sequence generated using the bunny model, also
with a minimum framerate of 30 frames per second. In this case, the stress field
errors reported in Fig. 7.6b are higher due to the stress peaks at the single‑node force
application, which causes that the elasticity phenomena remain very local in space.
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Figure 7.5: Frames extracted from the bunny sequence. Color encode the x displacement
field component imposed by contact with a real object.

The computational cost of the high fidelity FEM simulations is 27 s per simulation,
up to 2700 s for the whole dataset and 833 Mb in memory storage. The dataset and
edge count is much larger in this example, which increases the training time of the
neural network to 20 h and the evaluation time to 11 ms per snapshot with the same
memory storage as the previous example. Thus, the data compression is even bigger
in this case. To address the high training time and errors due to stress peaks, several
future improvements are discussed in the next section.
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Figure 7.6: Box plots of the relative L2 error of the bunny example. The state variables rep‑
resented are position (q), velocity (v), and stress tensor (σ).
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7.5 Conclusions
We presented a real‑time augmented reality simulator, which enables a user to inter‑
act with virtual deformable solids. The predictions are computed using the GENE‑
RIC structure of the system learnt with a message passing graph neural network.
The enforcement of such physics constraints guarantees the fulfilment of the first
and second laws of thermodynamics. The resulting algorithm has a wide variety of
applications not only in the entertainment industry, but also in engineering design
or manufacturing, where the visualization of augmented data superimposed in a
real or virtual object might redefine the next generation of industry 4.0 and digital
twins.

Our method has several limitations which might be addressed as future work. The
scalability to bigger meshes is a challenging task, as graph neural networks can suf‑
fer from over‑squashing or bottlenecks [6, 250]. As the core physics engine used in
this chapter is based on the TIGNNs, the limitations are very similar to Chapter 4.
Additional methods as future work are discussed in Chapter 8.

The visualization and data acquisition are possible due to the graphics acceleration.
Even if the current work was implemented in a desktop computer as a proof of con‑
cept, only a small fraction of all the computational resources were used, so it can
be extended to AR/VR headsets or to modern mobile devices. For the same reason,
higher framerates might be achieved by fine‑tuning and optimizing the proposed
network structure or porting the code to a higher‑performance language such as
C++. Occlusions in real‑time augmented reality software still remain as an open prob‑
lem in the computer vision community [203, 271]. The stereo depth estimation is an
approximation which might cause image artifacts in singular camera poses. For in‑
stance, some works handle the problem by using deep learning [171] but it is out of
the scope of this chapter.

This work is just a small step forward towards the new immersive technologies
which can potentially deeply change our society. It is a multidisciplinary problem
where computer vision, computer graphics, machine learning and computational
mechanics must meet to define new algorithms for a new digital revolution.
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This chapter provides an overview of the main results and contributions of the thesis
divided by its three core parts: deep learning of dynamical systems, latent manifold
learning and application to complex systems. In addition, future work is discussed
based on the limitations of the presented techniques.

8.1 Concluding Remarks

Deep Learning of Dynamical Systems

This thesis analyses the use of state‑of‑the‑art deep learning methods to learn simula‑
tors from data. For that purpose, we propose integration algorithms based on several
inductive biases which improve generalization and the accuracy of the results:

• The metriplectic bias ensures the thermodynamical consistency of the results,
i.e. energy conservation and entropy inequality. As opposed to many black‑box
approaches in scientific machine learning, we have shown that the structure‑
preserving techniques presented in this thesis have a certain level of inter‑
pretability in terms of energetic consistency of the results and mathematical
properties of the integrator.

• The limitations of Chapter 3 are then solved in Chapter 4 with the use of geo‑
metric biases, which exploit the geometrical properties of the domain with the
use of graph‑based algorithms. This approach improves greatly the versatility
of the algorithm, being able to generalize to unstructured domains and adapt
to different meshes due to the permutation and translational invariances built
upon it. The results are also competitive with state‑of‑the‑art GNN physics
simulator methods.

Both methods can be used if the governing equations are known or not. The metri‑
plectic structure of dynamics can be enforced by knowing the corresponding Poisson
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and dissipative operators, as in Chapter 3, or learnt based on data, as in Chapters 4
and 5.

Latent Manifold Learning

We have also proposed in Chapter 5 a reduced order model method to learn a sparse
representation of high‑dimensional systems. The main advantage of this technique
is that the intrinsic dimensionality of the data is learnt by the encoding projection in
an unsupervised manner even for highly nonlinear phenomena. Then, the structure‑
preserving methodologies can be applied in the more manageable reduced space.
This technique drastically reduces the compute time of large systems, which is ideal
for real‑time applications with very stringent time limitations.

Application to Complex Systems

The last chapters of the thesis explore the viability of the developed methodologies
to complex systems and real engineering applications.

• Chapter 6 show an extension of metriplectic systems to open domains where
the energetic interactions with the environment are crucial for achieving the
correct predictions. This study is relevant because real engineering systems are
rarely computed as a whole but with its constituent components, in order to
refine their design by different engineering teams or reduce the computational
requirements. In that case, the individual models must be corrected with the
energetic terms presented in this study.

Additionally, this technique can be applied to systems which interact with a
surrounding unknown system. In this case, the state vector of the external in‑
teraction is not known but only the perturbation produced to the main system.
Both situations can be learnt by the port‑metriplectic neural networks with sim‑
ilar accuracy to previous techniques.

• Chapter 7 integrates the proposed methods as a physics engine of an aug‑
mented reality application in deformable solids. This work shows the perfor‑
mance of thermodynamics‑informed neural networks under real‑time require‑
ments. The demo tested in an structured and unstructured mesh show a great
performance with stable framerates and smooth user interaction. Thus, the
physically‑sound integrators developed in this thesis could potentially be used
in digital twin and industrial applications in which the physical consistency of
the results is fundamental.
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8.2 FutureWork
This section proposes several research directions to overcome the limitations com‑
mented in the conclusion section of each individual chapter. These ideas emerged
during the development of the thesis, considering that machine learning is a very
active and productive research field.

In terms of interpretability, one could say that our models are a grey‑box as they still
use a trained neural network as the core computing unit. There is still room for
improvement, by using the latests advances in symbolic regression [26, 255], which
seek parsimonious closed models from data which might better approximate the
objective function and are also faster to evaluate. It is specially interesting the use of
symbolic regression in graph neural networks [41], because the node and edge blocks
have a clear intuitive interpretation as node‑wise and pair‑wise interactions between
particles. However, these techniques are limited if using normalization layers and
latent vectors, which need not to be interpretable at all.

A higher order Runge‑Kutta method could be introduced in the integration scheme
in order to get higher solution accuracy [267]. However, it requires several forward
passes through the neural net for each time step, incrementing the complexity of the
integration scheme and the training process. Additionally, GENERIC‑based integra‑
tion schemes have showed very good performance even for first‑order approaches
[222]. A similar approach could be obtained with the use of RNNs or Transformers
[257, 269]. This last architecture uses attention rather than recurrence to find tempo‑
ral patterns in large contexts, and recently had increased popularity due to its suc‑
cessful use in Large Language Models (LLMs). This method is conceptually similar
to a high‑order integration scheme with variable weights based on the self‑attention
mechanism [29, 232].

A limitation of the present work is the use of synthetic instead of experimental data.
A research field is opened to test the limits of the presented methodology applied
to real captured data, and to study the influence of noise in the measurements of
real‑world applications, such as digital twins of industrial processes or real‑time aug‑
mented/virtual reality environments. A more exhaustive analysis can be performed
to evaluate the influence of noisy data to the integrator evolution, in order to add ro‑
bustness to the method and even predict wider simulation times using incremental
learning [151, 36].

As shown in Chapter 4, the message passing algorithm has several disadvantages
when handling large domains which require fine grids. Future work may overcome
these limitation by combining graph representations with model order reduction
techniques, such as graph autoencoders [132] or U‑net architectures [65, 275]. The
idea is to replace deep message passing with various coarse‑graining steps, allow‑
ing the boundary information to reach every node in the simulation domain while
reducing the number of parameters of the neural network. This can also be mitigated
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by implementing a global attention vector so that certain dynamical information is
reached to all the nodes of the domain instantly.

Another interesting topic to extend our work is to improve the generalization and
decrease the amount of training data via equivariant arquitectures [125, 233], which
avoid data augmentation by exploiting the invariance to certain groups such as ro‑
tations SO(3) or general Euclidean transformations E(3).

In the case of the structure‑preserving autoencoders in Chapter 5, the latent space of
the reduction step can not only be sparsified, but also regularized using variational
inference via Variational Autoencoders [129]. This Bayesian approach is convenient
in cases where the latent variables are sampled or interpolated, and lead to smoother
transitions between them. A future line of this work is to explore VAEs applied to
physical systems and study their influence in the latent space topology and extrap‑
olability. The use of graph‑based architectures and implicit representations [31] can
also overcome the limitation of the fixed input mesh format and improve general‑
ization to varying meshes. To improve the over‑smoothness of the reconstructed dy‑
namics, a frequency‑based encoding layer might be added to the input layers which
transforms the dynamical features based on their frequency content and improves
the learning procedure [246].

The use of graph neural networks in elasticity problems has numerous similarities
to the peridynamic theory [239, 240]. This non‑local formulation of solid mechanics
has strong mathematical foundations and several advantages over discontinuities,
such as fracture, and long‑range force effects. It could be interesting to explore the
adaptation of peridynamic concepts in the geometric deep learning context to learn
more complex effects such as plasticity or fracture.

The techniques presented in this thesis have already been used in several real‑world
applications, such as the study of the sloshing effects of liquids in real‑time [188]
with promising results. There is a possible future research line towards augmented
reality applications in a similar fashion of Chapter 7, regarding optimization of the
proposed pipeline and extension to more complex geometries, load cases and mate‑
rial constitutive properties.

122



Conclusiones 9

En este capítulo se ofrece una visión general de los principales resultados y contribu‑
ciones de la tesis divididos en sus tres partes principales: aprendizaje profundo de
sistemas dinámicos, aprendizaje de espacios latentes y aplicación a sistemas comple‑
jos. Además, se discute el trabajo futuro basado en las limitaciones de las técnicas
presentadas.

9.1 Observaciones finales

Aprendizaje profundo de sistemas dinámicos

Esta tesis analiza el uso de métodos de aprendizaje profundo de última generación
para aprender simuladores a partir de datos. Para ello, se proponen algoritmos de
integración basados en varios sesgos inductivos que mejoran la generalización y la
precisión de los resultados:

• El sesgo metripléctico asegura la consistencia termodinámica de los resultados,
es decir, la conservación de la energía y la desigualdad de entropía. A diferen‑
cia de muchos enfoques caja negra en el aprendizaje automático científico, se ha
demostrado que las técnicas de preservación de la estructura presentadas en
esta tesis tienen un cierto nivel de interpretabilidad en términos de consistencia
energética de los resultados y propiedades matemáticas del integrador.

• Las limitaciones del Capítulo 3 se resuelven posteriormente en el Capítulo 4
con el uso de sesgos geométricos, que explotan las propiedades geométricas del
dominio con el uso de algoritmos basados en grafos. Este enfoque mejora
enormemente la versatilidad del algoritmo, pudiendo generalizarse a domin‑
ios no estructurados y adaptarse a diferentes mallas gracias a las invarianzas
de permutación y traslación construidas sobre él. Los resultados también son
competitivos con los métodos de simulación física basados en grafos más avan‑
zados.
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Ambos métodos pueden utilizarse tanto si se conocen las ecuaciones del sistema
como si no. La estructura metripléctica de la dinámica puede imponerse conociendo
los correspondientes operadores de Poisson y disipativos, como en el Capítulo 3, o
aprenderse basándose en datos, como en los Capítulos 4 y 5.

Aprendizaje de espacios latentes

También se ha propuesto en el Capítulo 5 un método de reducción de orden para
aprender una representación reducida de sistemas de alta dimensionalidad. La prin‑
cipal ventaja de esta técnica es que la dimensionalidad intrínseca de los datos es
aprendida por la proyección de codificación de forma no supervisada incluso para
fenómenos altamente no lineales. A continuación, las metodologías de preservación
de la estructura pueden aplicarse en un espacio reducido más manejable. Esta téc‑
nica reduce drásticamente el tiempo de cálculo de grandes sistemas, lo que resulta
ideal para aplicaciones en tiempo real con limitaciones de tiempo muy estrictas.

Aplicación a sistemas complejos

Los últimos capítulos de la tesis exploran la viabilidad de las metodologías desarrol‑
ladas para sistemas complejos y aplicaciones reales de ingeniería.

• Capítulo 6 muestra una extensión de los sistemas metriplécticos a dominios
abiertos donde las interacciones energéticas con el entorno son cruciales para
obtener predicciones correctas. Este estudio es relevante porque los sistemas
de ingeniería reales rara vez se calculan como un todo, sino mediante sus com‑
ponentes constituyentes, con el fin de refinar su diseño por diferentes equipos
de ingeniería o reducir los requerimientos computacionales. En ese caso, los
modelos individuales deben corregirse con los términos energéticos presenta‑
dos en este estudio.

Además, esta técnica puede aplicarse a sistemas que interactúan con un en‑
torno desconocido. En este caso, no se conoce el vector de estado de la in‑
teracción externa, sino sólo la perturbación producida en el sistema princi‑
pal. Ambas situaciones pueden ser aprendidas por las redes neuronales port‑
metriplécticas con una precisión similar a la de las técnicas anteriores.

• Capítulo 7 integra los métodos propuestos en el motor físico de una aplicación
de realidad aumentada en sólidos deformables. Este trabajo muestra el rendi‑
miento de las redes neuronales informadas por la termodinámica bajo requer‑
imientos de tiempo real. La demo probada en una malla estructurada y no
estructurada muestra un gran rendimiento con framerates estables y una inter‑
acción fluida con el usuario. Así, los integradores con información física desar‑
rollados en esta tesis podrían ser potencialmente utilizados en aplicaciones de
gemelos digitales e industriales en las que la consistencia física de los resulta‑
dos es fundamental.
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9.2 Trabajo futuro
Esta sección propone varias direcciones de investigación para superar las limita‑
ciones comentadas en la sección de conclusiones de cada capítulo individual. Estas
ideas surgieron durante el desarrollo de la tesis, teniendo en cuenta que el apren‑
dizaje automático es un campo de investigación muy activo y productivo.

En términos de interpretabilidad, se podría decir que nuestros modelos son una caja
gris, ya que siguen utilizando una red neuronal entrenada como unidad de cálculo
central. Todavía se puede mejorar, utilizando los últimos avances en regresión sim‑
bólica [26, 255], que buscan modelos cerrados parsimoniosos a partir de los datos
que puedan aproximar mejor la función objetivo y que además sean más rápidos
de evaluar. Es especialmente interesante el uso de la regresión simbólica en redes
neuronales de grafos [41], ya que los bloques de nodos y aristas tienen una clara
interpretación intuitiva como interacciones entre partículas. Sin embargo, estas téc‑
nicas están limitadas si se utilizan capas de normalización y vectores latentes, que
no tienen por qué ser interpretables en absoluto.

Se podría introducir un método Runge‑Kutta de orden superior en el esquema de
integración para obtener una mayor precisión en la solución. Sin embargo, requiere
varias pasadas hacia adelante a través de la red neuronal para cada paso de tiempo,
aumentando la complejidad del esquema de integración y el proceso de formación.
Además, los esquemas de integración basados en GENERIC han mostrado muy buen
rendimiento incluso para aproximaciones de primer orden [222]. Un enfoque similar
podría obtenerse con el uso de RNNs o Transformers [257, 269]. Esta última arquitec‑
tura utiliza la atención en lugar de la recurrencia para encontrar patrones temporales
en grandes contextos, y recientemente ha aumentado su popularidad debido a su ex‑
itoso uso en modelos de lenguaje (LLMs). Este método es conceptualmente similar
a un esquema de integración de alto orden con pesos variables basado en el mecan‑
ismo de autoatención [29, 232].

Una limitación del presente trabajo es el uso de datos sintéticos en lugar de experi‑
mentales. Es posible abrir un campo de investigación para probar los límites de la
metodología presentada aplicada a datos reales capturados, y estudiar la influencia
del ruido en las mediciones de aplicaciones del mundo real, como gemelos digitales
de procesos industriales o entornos de realidad aumentada/virtual en tiempo real.
Se puede realizar un análisis más exhaustivo para evaluar la influencia de los datos
ruidosos en la evolución del integrador, con el fin de añadir robustez al método e
incluso predecir tiempos de simulación más amplios utilizando el aprendizaje incre‑
mental [151, 36].

Como se muestra en el Capítulo 4, el algoritmo demessage passing tiene varias desven‑
tajas cuando se manejan grandes dominios que requieren mallas finas. El trabajo fu‑
turo puede superar estas limitaciones mediante la combinación de representaciones
en grafos con técnicas de reducción del orden del modelo, como los autoencoders
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basados en grafos [132] o las arquitecturas de tipo U‑net [65, 275]. La idea es susti‑
tuir el message passing por varios pasos de cambio de escala, lo que permite que las
condiciones de contorno lleguen a todos los nodos del dominio de la simulación a
la vez y que se reduzca el número de parámetros de la red neuronal. Esto también
puede mitigarse implementando un vector de atención global para que la informa‑
ción dinámica llegue a todos los nodos del dominio de forma instantánea.

Otro tema interesante para ampliar el trabajo es mejorar la generalización y dis‑
minuir la cantidad de datos de entrenamiento mediante arquitecturas equivariantes
[125, 233], que evitan el aumento de datos explotando la invariancia a ciertos grupos
como rotaciones SO(3) o transformaciones euclidianas generales E(3).

En el caso de los autoencoders que preservan la estructura en el Capítulo 5, el espacio
latente del bloque de reducción también puede ser regularizado utilizando inferen‑
cia variacional a través de autoencoders variacionales [129]. Este enfoque Bayesiano
es conveniente en casos donde las variables latentes son muestreadas o interpoladas,
y conducen a transiciones más suaves entre ellas. Una línea futura de este trabajo es
explorar VAEs aplicados a sistemas físicos y estudiar su influencia en la topología
del espacio latente y la extrapolabilidad. El uso de arquitecturas basadas en grafos
y representaciones implícitas [31] también puede superar la limitación del formato
fijo de malla de entrada y mejorar la generalización a mallas variables. Para mejo‑
rar el suavizado de la dinámica reconstruida, podría añadirse a las capas de entrada
una capa de codificación basada en la frecuencia que transforme las características
dinámicas en función de su contenido en frecuencia y mejore el procedimiento de
aprendizaje [246].

El uso de redes neuronales basadas en grafos en problemas de elasticidad tiene nu‑
merosas similitudes con la teoría peridinámica [239, 240]. Esta formulación no local
de la mecánica de sólidos tiene fuertes fundamentos matemáticos y varias ventajas
sobre efectos discontinuos, como la fractura, y fuerzas de largo alcance. Podría ser
interesante explorar la adaptación de los conceptos peridinámicos en el contexto del
aprendizaje profundo geométrico para aprender efectos más complejos como la plas‑
ticidad o la fractura.

Las técnicas presentadas en esta tesis ya han sido utilizadas en varias aplicaciones del
mundo real, como el estudio de los efectos de oscilación de líquidos en tiempo real
[188] con resultados prometedores. Existe una posible línea de investigación futura
hacia aplicaciones de realidad aumentada de forma similar al Capítulo 7, en cuanto a
optimización de la técnica propuesta y extensión a geometrías más complejas, casos
de carga y propiedades constitutivas de los materiales.
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